ANNALES GEOPHYSICAE, VOL. 26, 2311-2321, 2008

Case study of the mesospheric and lower thermospheric effects of solar X-ray flares: coupled ion-neutral modelling and comparison with EISCAT and riometer measurements

C.-F. Enell1, P. T. Verronen2, M. J. Beharrell3, J. P. Vierinen1, A. Kero1, A. Seppälä2, F. Honary3, Th.Ulich1, E. Turunen1

1Sodankylä Geophysical Observatory, Sodankylä, Finland,
2Earth Observation Unit, Finnish Meteorological Institute, Helsinki, Finland,
3Dept of Communication Systems, Lancaster University, UK.

Abstract

Two case studies of upper mesospheric and lower thermospheric (UMLT) high-latitude effects of solar X-ray flares are presented. Sodankylä Ion-neutral Chemistry Model (SIC) electron density profiles agree with D-region EISCAT and riometer observations, provided that the profiles of the most variable ionisable component, nitric oxide, are adjusted to compensate for NOx production during preceding geomagnetically active periods. For the M6-class flare of 27 April 2006, following a quiet period, the agreement with cosmic noise absorption observed by the Sodankylä riometers was within reasonable limits without adjustment of the [NO] profile. For the major (X17-class) event of 28 October 2003, following high auroral activity and solar proton events, the NO concentration had to be increased up to on the order of 108 cm-3 at the D-region minimum. Thus [NO] can in principle be measured by combining SIC with observations, if the solar spectral irradiance and particle precipitation are adequately known.

As the two case events were short and modelled for high latitudes, the resulting neutral chemical changes are insignificant. However, changes in the model ion chemistry occur, including enhancements of water cluster ions.

© 2008 by the European Geosciences Union. Further electronic publication not allowed.

On-line version (might require subscription): here.