Response of Ion and Neutral Composition of Lower Ionosphere During Bursts of Auroral Electrons

> Thomas Ulich & Esa Turunen Sodankylä Geophysical Observatory Tuomo Nygrén & Kari Kaila Dept. of Physical Sciences, University of Oulu

> > Internet: http://www.sgo.fi/

Sodankylä Ion Chemistry: SIC

- D-region Model: valid from 50 to 100 km
- Detailed chemistry
 - 56 ions (37 positive, 19 negative)
 - 400+ reactions included
 - 103-ion version under preparation
- Steady state or time-dependent
- Well established: see, e.g., STEP Handbook of lonospheric Models

SIC - Positive Ion Chemistry

Positive ion reaction scheme

SIC - Negative Ion Chemistry

Negative ion reaction scheme

EISCAT

- <u>European Incoherent</u>
 <u>Scatter Scientific</u>
 Association
- Tristatic IS Radars
 - Tromsø, Norway
 - Kiruna, Sweden
 - Sodankylä, Finland
- New: Svalbard, Norway
- Members UK, Germany, France, Japan, Norway, Sweden, Finland

Photo: Jyrki Manninen

Observed Event

- Time:
 - December 17, 1990, 02:50 UT to 03:03 UT
- Experiment:
 - EISCAT Tromsø, UHF Radar
 - Finnish-designed PULSE experiment
 - High resolution: 0.2 s / 1.03 km
- Photometer data of same time resolution shows pulsating aurora.

Impulsive Precipitation Events EISCAT "Pulse" on December 17, 1990

EISCAT Data & SIC Model

α_{eff} and [NO⁺]/[O₂⁺] 99 km and 94 km

$[NO^+]/[O_2^+]$ at 99 km

- Expected behaviour: Rapid decrease of [NO⁺]/[O₂⁺] due to direct ionization of O₂⁺ and charge transfer N₂⁺ + O₂ -> N₂ + O₂⁺.
- Modelled result:
 - At 94 km: as expected.
 - At 99 km: intermediate increase of $[NO^+]/[O_2^+]$.
- If there are high abundances of neutral atomic oxygen, then more NO⁺ ions are formed due to the fast reaction N₂⁺ + O -> NO ⁺ + N.

Profiles of Effective Recombination Coefficient

Eff. Recombination Coefficient SIC Model Results for α_{eff}

Gradual Increase of α_{eff}

Electron Density: Measurement and SIC Model

Conclusions

- Effective Recombination Rate is not constant, it varies during precipitation.
- Variation is between ±5% and ±10% or on the average 0.3x10⁻⁷ cm³ s⁻¹.
- Different relative abundances of neutral atomic oxygen lead to different behaviour of α_{eff} at, e.g. 94 km and 99 km altitude.
- α_{eff} increases gradually throughout the series of precipitation bursts, indicating a cumulative response.