A new method for decoding phase codes

Ilkka. I. Virtanen¹ M. S. Lehtinen² T. Nygrén¹ M. Orispää² J. Vierinen²

¹Department of Physical Sciences University of Oulu, Finland

²Sodankylä Geophysical Observatory Finland

Outline

- Recording the amplitude data
- Short introduction to lag profile inversion
- Comparison to alternating code decoding

Sac

First results of a code pair experiment

Data recording

- The attenuated transmitter signals and ionospheric echoes are recorded in amplitude domain
- The digitizer is connected to the second IF stage of the radars

- Sampling frequency usually 1 MHz
- Raw samples saved in hard disk for later analysis

Lagged products and range ambiguity functions

- Transmission envelopes env(t) and the echoes z(t) in the same data stream
- A data vector contains one integration period of data
- Lagged products of the data vector and its complex conjugate
 - Ambiguous lagged products from the echo part

$$m_{\tau}(t) = z(t)z(t-\tau)$$

Range ambiguity functions from the transmission part

$$W_{ au}(t,S) = env(t-S)\overline{env(t- au-S)}$$

Lag profile inversion

- The radar beam is divided into range gates
- x_{τ}^{k} is the unknown lag value in gate k
- Each $m_{\tau}(t)$ is a weighted sum of the unknowns x_{τ}^{k}

$$m_{ au}(t) = \sum_{k=1}^{N} a_{ au}^k(t) x_{ au}^k + arepsilon_{ au}(t),$$

• Coefficient $a_{\tau}^{k}(t)$ is the integral of $W_{\tau}(t, S)$ over range gate k

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → 의 () ()

 All lagged products from one integration period are collected in a large set of linear equations

$$\mathsf{m}_{ au} = \mathsf{A}_{ au}\mathsf{x}_{ au} + arepsilon_{ au}$$

- The most probable lag profile and its variance can be solved with FLIPS
- ► The same procedure for all lag profiles ⇒ ACF
- Parameter fit to the ACF using iterative methods

MANDA, Nov. 25th 2006, 22:05 UT, 6s integration time, real part

MANDA, Nov. 25th 2006, 22:05 UT, 6s integration time, imaginary part

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶</p>

MANDA, Nov. 25th 2006, 22:05 UT, 1 min integration time

Binary code pair experiment

- Nov. 26th 2006
- 21-bit binary code pair
- Bit length 10 μ s
- In this example:
 - ► Full lags 1,2,...,17,18
 - In each full lag \pm 2 μ s fractional lags included

- Time resolution 10 seconds
- Range resolution 2 km

Summary

- Lag profile inversion was introduced as an analysis method for any phase and / or amplitude modulated ISR experiment
- Lag profile inversion was successfully used for analysing alternating code experiment
- A new experiment with a phase code pair was designed
- Amplitude data from the new experiment was successfully analysed with lag profile inversion

↓ □ ▶ ↓ @ ▶ ↓ @ ▶ ↓