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SODANKYLÄ GEOPHYSICAL OBSERVATORY PUBLICATIONS
Editor: Johannes Kultima
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“Veröffentlichungen des geophysikalischen Observatoriums

der Finnischen Akademie der Wissenschaften”
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Abstract

The problem of recovering information from measurement data has already been stud-
ied for a long time. In the beginning, the methods were mostly empirical, but already
towards the end of the sixties Backus and Gilbert started the development of mathe-
matical methods for the interpretation of geophysical data.

The problem of recovering information about a physical phenomenon from measure-
ment data is an inverse problem. Throughout this work, the statistical inversion
method is used to obtain a solution.

Assuming that the measurement vector is a realization of fractional Brownian motion,
the goal is to retrieve the amplitude and the Hurst parameter. We prove that under
some conditions, the solution of the discretized problem coincides with the solution of
the corresponding continuous problem as the number of observations tends to infinity.

The measurement data is usually noisy, and we assume the data to be the sum of
two vectors: the trend and the noise. Both vectors are supposed to be realizations
of fractional Brownian motions, and the goal is to retrieve their parameters using the
statistical inversion method. We prove a partial uniqueness of the solution. Moreover,
with the support of numerical simulations, we show that in certain cases the solution
is reliable and the reconstruction of the trend vector is quite accurate.
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Markku Lehtinen and Prof. Samuli Siltanen for their valuable work as reviewers of
my thesis. I also thank Dr. Matti Vallinkoski for helpful suggestions.

I would like to thank the Inverse Problems Group at the University of Oulu. I am
also grateful to Dr. Petteri Piiroinen, his tips and hints on small and big issues have
been invaluable.

Un ringraziamento speciale va ai miei genitori, i quali non hanno mai smesso di credere
in me.

iii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Introduction 1

1 Amplitude of Brownian motions 5

1.1 The statistical inversion method . . . . . . . . . . . . . . . . . . . . . 7

1.2 The inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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Introduction

An inverse problem framework consists of a physical model M , a set of model param-
eters (not all directly measurable) describing M and a set of observable parameters
whose values depend on the values of the model parameters. Solving the forward prob-
lem means calculating the values of the observable parameters given the values of the
model parameters. On the other hand, solving the inverse problem means inferring
the values of the model parameters given the values of the observable parameters.

In this work we consider the problem of recovering information from geophysical data.
Like most of the natural phenomena, geophysical data are measured directly and indi-
rectly. For example, the temperature of the air at different altitudes can be measured
directly. On the other hand, the ozone density in the stratosphere cannot be measured
directly. However, it is possible to retrieve it, since it is known from physics that the
ozone density is a function of pressure (see [5]).

Both measurement vectors, the air temperature and ozone density, are affected by
noise due to the climatic conditions and the measuring instrument accuracies and
electronics. In this example, the inverse problem would be to retrieve the trend by
eliminating the noise from the measurement vector.

For a long time, the methods for extracting information from data were mostly em-
pirical. Backus and Gilbert made a systematic study of the mathematical structure
at the basis of the inverse problems and started the development of methods for the
interpretation of geophysical data (see, e.g. [1], [2]).

To recover the solution of the inverse problem in this work, we use the statistical inver-
sion method. The statistical inversion method is well known among scientists dealing
with measurements of natural phenomena (see [20, 21]). The method is theoretically
simple and gives surprisingly good results. The characteristic of this method is to
think that the measurement vector is actually a realization of a stochastic process.
The statistical inversion method assumes that all the information about the measure-
ment vector is contained in this distribution. The nature of the inversion problem
is further described by an appropriate a priori, prior, probability distribution for the
solution.

In this work, we approach the problem from a mathematical point of view. Usually
measurements are noisy. One of the most difficult problems in recovering the solution
is noise estimation. Usually the phenomenon we want to recover has a non-stationary
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2 INTRODUCTION

trend. The measurement data is then the sum of the trend and noise. Here, we
assume that both the trend and the error are realizations of fractional Brownian
motions with different parameters. We suppose that we have no a priori knowledge
about the underlying parameters of the two fractional Brownian motions and use the
stochastic inversion method with a constant prior distribution.

This work has two main goals. The first one is to prove that the solution of the
discrete problem associated with a continuous problem coincides with the solution of
the original continuous problem as the number of observations tends to infinity. The
second goal of this work is to prove the uniqueness of the solution of the problem to
recover the two fractional Brownian motions from their sum.

This will be done in several steps. In the first chapter, we consider a realization
of Brownian motions and calculate the a posteriori, posterior, distribution of the
amplitude parameter. We prove that the posterior distribution concentrates on the
correct value of the parameter when the number of measurements tends to infinity.

This answers a question always present when recovering information from geophysical
measurements. The models studied are usually continuous in time, but the measure-
ments are performed on a discrete set of time variables. The question is whether this
affects the reliability of the solution. We prove that the solution of the discretized
problem tends to the solution of the continuous problem when the number of mea-
surements tends to infinity.

In the second chapter, we generalize the result of the first chapter to the case of a
realization of fractional Brownian motion with a fixed Hurst parameter. The main
difficulty in the analysis is due to the complicated form of the inverse of the covariance
matrix, here called the inverse covariance matrix, of the stochastic process. In the
proof, we have to make some assumptions based on numerical results, and consider a
simplified version of the problem. In particular, we consider an approximation of the
inverse of the exact covariance matrix, here called the approximate inverse covariance
matrix, in order to perform the analytic calculation. Due to a technical assumption,
we also need 1

2 < H < 1.

When estimating the Hurst parameter of a fractional Brownian motion with a fixed
amplitude parameter, we prove that the statistical inversion method gives the correct
solution for the estimator when the number of measurements is large enough. Also in
this case, since we use the approximate inverse of the covariance matrix, we need the
restriction 1

2 < H < 1.

In the third chapter, we consider the sum of two fractional Brownian motions. We
assume that the measurement vector is a stochastic process consisting of the sum of
two realizations of fractional Brownian motion. One realization represents the trend
and the other one represents the noise. We prove the partial uniqueness of the solution
obtained using the statistical inversion method.

In the fourth chapter, we present simulation results. We generate two realizations
of fractional Brownian motion. Taking the sum of these two realizations, we obtain
a measurement vector. From the posterior distribution, we retrieve the underlying
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parameters and reconstruct the two realizations. The simulations show that it is
possible to retrieve the underlying parameters in the case 0 < H < 1

2 . Moreover,
in the case of the sum of two fractional Brownian motions, the simulations support
the analytic result and show that it is only possible to retrieve the smaller of the two
Hurst parameters.

In the fifth chapter, we conclude that the statistical inversion method gives satisfactory
results when retrieving the trend from measurements where both the trend and the
noise are assumed to be realizations of fractional Brownian motions with different
underlying parameters.





Chapter 1

Retrieving the amplitude parameter
of Brownian motions

We start by some concepts from probability theory that will be used below. Let
(Ω,B, P ) denote a given complete probability space and B(Rn) is the Borel σ-algebra
of Rn.

Definition 1.1. A B-measurable function X : Ω→ Rn is called a random variable.
Every random variable X induces a probability measure µX on (Rn,B(Rn)), defined
by

µX(B) = P (X−1(B)). (1.2)

The measure µX is called the distribution ofX. A stochastic process is a collection
of random variables {X(t), t ∈ I} defined on a probability space (Ω,B, P ) with values
on (Rn,B(Rn)).

The index t represents the time (i.e. I is a subset of the real line). This means that
X is a real-valued function X(t, ω) on I × Ω which is a B-measurable function on Ω
for each t ∈ I. In this paper, we will occasionally use the notation X(t) to denote the
random variable X(t, ·).

Definition 1.3. A stochastic process {X(t), t ∈ I} defined on a probability space
(Ω,B, P ) is called an additive process (or a process with independent increments)
if for any {t1, t2, ..., tn} ∈ I, t1 < t2 < ... < tn, the system of random variables
{X(ti+1, ·)−X(ti, ·), i = 1, 2, ..., n− 1} is independent.

The definition and basic properties of Brownian motions, denoted as BM from now
on, follow below.

Definition 1.4. A Brownian motion is an additive random process B on a prob-
ability space (Ω,B, P ) and an interval I ⊂ R such that:

5



6 CHAPTER 1. AMPLITUDE OF BROWNIAN MOTIONS

1. for fixed ω ∈ Ω, B(t, ω) is a continuous function with respect to t, and with
probability 1 we have B(0, ω) = 0 (i.e. the process starts from the origin).

2. ∀t ≥ 0 and h > 0 we have

B(t+ h, ω)−B(t, ω) ∼ η(0, h)

where η(0, h) is the normal distribution with mean 0 and variance h. Thus

P (B(t+ h, ω)−B(t, ω) ≤ x) = (2πh)−1/2

∫ x

−∞
exp
(
−u

2

2h
)
du.

Remark 1.5. Since the distribution of B(t + h, ω) − B(t, ω) is independent of t (i.e.
B has stationary increments), assuming that t = 0 above, it is easy to see that
B(t, ω) ∼ η(0, t) ∀t ∈ I.

The above definition is easily extended from R to Rn:

Definition 1.6. 1. Stochastic processes X1 and X2 defined on the probability
space (Ω,B, P ) with values in (R,B(R)) are stochastically independent pro-
cesses if, for any finite set of time points

t11, t12, ..., t1n1 , t21, t22, ..., t2n2 ,

the vectors

X1 = (X1(t11), ..., X1(t1,n1)),X2 = (X2(t21), ..., X2(t2,n2)),

are independent.
2. A random variable B = (B1, ..., Bn) : [0,∞)→ Rn is an n-dimensional Brow-

nian motion on the probability space (Ω,B, P ) if for each i = 1, ..., n, Bi(t, ω)
is a 1-dimensional Brownian motion, and the stochastic processes {B1, ..., Bn}
are stochastically independent.

As in Definition 1.4, it is easy to prove also in the multidimensional case (see [4]) that
the process defined in definition 1.6 can be characterized as a process having station-
ary independent increments such that X(t) − X(0) has an n-dimensional Gaussian
distribution with zero mean and covariance matrix equal to t · In, where In is the
n-dimensional identity matrix.

Moreover, letting B′i(t, ω) = α−1/2Bi(αt, ω) we have ∀xi, u/
√
α = v and du =

√
αv:

P ((B′i(t+ h, ω)−B′i(t, ω)) ≤ xi)
= P ((Bi(α(t+ h), ω)−Bi(αt, ω)) ≤ α1/2xi)

= P ((Bi(αh, ω)−Bi(0, ω)) ≤ α1/2xi)

= α−1/2

∫ α1/2xi

−∞
(2πh)−1/2 exp(− ui

2

2αh
)dui

=
∫ xi

−∞
(2πh)−1/2 exp(−vi

2

2h
)dvi

= P ((Bi(t+ h, ω)−Bi(t, ω)) ≤ xi).

(1.7)
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It is straightforward to show that B′i(t) is a continuous stochastic process starting from
0 and additive, and hence a Brownian motion. Since {B′1, ..., B′n} are also independent,
the process B′ is an n-dimensional Brownian motion. Thus α1/2B(t, ω) and B(αt, ω)
have the same distribution, i.e. the Brownian paths are self-similar.

1.1 The statistical inversion method

We will use a mathematical formulation of the classical statistical inversion method
as in [20, 21]. Usually, in solving ill-posed inverse problems, the quality of the result
depends on how well one is able to make use of prior information. The main idea
in the statistical inversion method is to consider the inverse problem as a Bayesian
inference problem.

In statistical inversion theory, both the unknown quantity and the measurements
are considered to be random variables. The randomness of the variables reflects the
uncertainty on their actual value and the probability distribution of each variable de-
scribes its degree of uncertainty. The conditional distribution of the unknown variable
given the measurement, the posterior density, will give us the solution in the Bayesian
inference.

This last characteristic, in particular, makes the difference between the statistical
approach and the traditional approach. Classical regularization methods produce
single estimates for the unknown. The statistical method instead gives a distribution
that can be used to obtain estimates of the unknown.

Consider measurable spaces (Mi,Bi), i = 0, ..., n. Let mi : Ω→Mi be a set of random
variables such that m1, ...mn are independent of m0. Suppose that we want to retrieve
the variable m0 and denote the measurement vector by (m̂1, ..., m̂n). Assuming that
the conditional density D(m0, m̂1, ..., m̂n) exists, the posterior distribution of the
variable m0 can be defined by the conditional distribution

Dpost(m0) = D(m0|m1 = m̂1, ...,mn = m̂n)

=
D(m0, m̂1, ..., m̂n)∫

M0
D(m0, m̂1, ..., m̂n)dm0

∼ Dpr(m0)D(m̂1, ..., m̂n|m0)

(1.8)

where Dpr(m0) represents the prior distribution of m0.

The approximate equal sign ∼ means that Equation (1.8) is true up to a normalization
constant.

To estimate the pointm0 we use in this work one of the most popular statistical estima-
tors, the maximum a posteriori estimate (MAP). Given the posterior probability
density D(m0|m1 = m̂1, ...,mn = m̂n) of the unknown m0 ∈ M0, the MAP estimate
will be

(m0)MAP = arg max
m0∈M0

D(m0|m1 = m̂1, ...,mn = m̂n),

provided that such a maximizer exists.
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In this work, we use the statistical inversion method in the study of the posterior
distributions. In particular, the solution of the problem presented above is given by
the point m0 where the posterior distribution Dpost(m0) maximizes, i.e. we calculate
the maximum likelihood estimate.

One of the main problems is to specify the prior distribution of the unknown variable
m0. Usually, the only solution to this problem is to guess the most suitable prior dis-
tribution for m0. In many cases, and in particular in this work, the prior distribution
may be supposed to be constant.

1.2 The inverse problem

In the following we consider the stochastic process

X(t, ω) =
√
âB(t, ω). (1.9)

The positive constant â is called the amplitude parameter. Figure 1.1 shows a realiza-

Figure 1.1: X(t, ω) =
√
âB(t, ω).
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tion of the process defined above. In this section, our goal is to retrieve the amplitude
parameter, if X(t) is known for each t ∈ I. We use the statistical inversion method to
find the posterior distribution of the amplitude parameter â, and obtain the maximum
likelihood estimate of our parameter.

Let X(n) = (X(t1, ω), ..., X(tn, ω))T be the vector of the observed values of (1.9) at
n time instants t1, ..., tn. Since X(ti) is Gaussian, the joint distribution function of
X(n) is

D(X(t1), ..., X(tn)) = (2π)−
n
2
∣∣Σ(n)

∣∣− 1
2 exp(−1

2
X(n)Σ−1

(n)X(n))

where Σ(n) is the covariance matrix of the stochastic vector, i.e. (c.f. [17])

(Σ(n))ij = â ·min(ti, tj) ∀i, j = 1, ..., n.

In this paper we always assume that the stochastic process is non-degenerate, i.e.∣∣Σ(n)

∣∣ 6= 0.

By Equation (1.8), the posterior distribution for the process (1.9) will be

Dpost(â,X(n)) = Dpr(â)D(X(n)|â).

We also assume that we do not have any prior information on the behavior of â. We
always assume that

Dpr(a) =
1

tn − t1
.

In order to simplify notations, we define β = (tn − t1)−1, but keep in mind that it
depends on the length of the sampling interval. Thus for the process (1.9) we have

Dpost(â,X(n)) = β (2π)−n/2
∣∣Σ(n)

∣∣−1/2 exp
(
− 1

2
XT

(n)Σ
−1
(n)X(n)

)
. (1.10)

Figure 1.2 shows a possible posterior distribution. In Bayesian inference, the study
of this posterior distribution gives an estimate of â.

In this way, the problem of recovering the amplitude parameter is solved. However,
if we want to recover a parameter related to a physical phenomenon, we are dealing
with a process defined for all t ∈ I, not just on a discrete set of observation times ti.
Once we make measurements, we make it a discrete problem. In many cases, it is still
an open question whether the solution of the discretized problem will coincide with
the solution of the continuous problem.

We prove that, in the limit n → ∞, the solution of the discretized problem is the
same as in the continuous case for the process defined in Equation (1.9).

1.3 Study of Dpost(â,X) when n→∞ for t ∈ [0,∞)

In this section we prove that, for the problem in Equation (1.9), the estimate ā
obtained from the posterior distribution coincides with the parameter â in the limit
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Figure 1.2: Posterior distribution Dpost(â,X(n)).

n → ∞. This is possible when the posterior distribution is concentrated around the
value â.

Figure 1.3 shows how the width of the posterior distribution depends on the number
of measurements. In particular, in the following calculation we assume equidistant
measurement times, i.e. ti are s.t. t1 < ... < tn with ti+1− ti = h. By letting n→∞,
we suppose that we are measuring for an infinitely long time. Although this is not
possible in reality, it will be convenient to prove the theorem first in this case.

Before the proof, we need some preliminary results. We use Laplace’s method to study
the asymptotic behavior of integrals.

In the following, by A ∼ B as x→∞ we mean that

lim
x→∞

A(x)
B(x)

= 1.

In such case we say that A is asymptotic to B. Clearly this is a symmetric relation,
i.e. A ∼ B ⇐⇒ B ∼ A.
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Figure 1.3: Posterior distributions of a realization of the same process with a different
number of measurements.

From Theorem 19.3b in [9], we have the following corollary:

Lemma 1.11. (Laplace’s method) Suppose f : [b, d]→ R satisfies the following:

1. f has two continuous derivatives in {b < t < d}, where b and d may be finite or
infinite,

2. f is decreasing in {b < t ≤ c} and
f is increasing in {c ≤ t < d}

3. f ′(c) = 0 and f ′′(c) > 0,
4. there is an x0 for which

I(x) =
∫ b

a

e−xf(t)dt

exists for x = x0.

Then I(x) exists for all x > x0 and

I(x) ∼ e−xf(c)
√

2π√
xf ′′(c)

as x→∞.



12 CHAPTER 1. AMPLITUDE OF BROWNIAN MOTIONS

By Stirling’s formula [9]

Γ(x+ 1) ∼
√

2πxx+ 1
2 e−x as x→∞. (1.12)

Let X(n) be the process defined in (1.9). To simplify notations, we define yi =
X(ti, ω)−X(ti−1, ω), with t0 = 0.

From the definition of Brownian motion, it follows that the covariance matrix of the
stochastic process X(n) is equal to â Σ̃(n) where

Σ̃(n) =



1 1 1 . . . 1 1
1 2 2 . . . 2 2
1 2 3 . . . 3 3
. . . . . . . . . . . . . . . . . .

1 2 3 . . . n− 1 n− 1
1 2 3 . . . n− 1 n


, (1.13)

and its inverse

Σ̃−1
(n) =



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 2 −1
0 0 0 . . . −1 1


. (1.14)

Because of the simple structure of the inverse of the matrix Σ̃(n), we have

XT
(n)Σ̃

−1
(n)X(n) =

n∑
i=1

(X(ti, ω)−X(ti−1, ω))2 =
n∑
i=1

y2
i . (1.15)

Denote Sn =
∑n
i=1 y

2
i . Note that from Definition 1.4 it follows that yi ∼ η(0, â h),

where h = ti+1 − ti. Without loss of generality, we may set h = 1. Also note that∣∣Σ(n)

∣∣ = ân
∣∣∣Σ̃(n)

∣∣∣. Then, since
∣∣∣Σ̃(n)

∣∣∣ = 1, the process X(n) will be non-degenerate
for all â 6= 0.

We can now prove the following:

Theorem 1.16. Let X(n) = (X(t1, ω), ..., X(tn, ω))T be the vector of measurements
in (1.9) with ti+1 − ti = h, and ā a random variable with distribution Dpost(â, X(n))
as given in (1.10). Then, for all ε > 0 such that ε < â

lim
n→∞

P(â− ε < ā < â+ ε) = 1.

Proof. From Equations (1.10) and (1.15) we have

P(â− ε < ā < â+ ε) = E
[ β

C(n)(Snπ)n/2

∫ â+ε

â−ε
(
Sn
2a

)n/2 exp(−Sn
2a

)da
]
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where C(n) is a normalization constant.

Substituting t = Sn/2a this becomes

P(â− ε < ā < â+ ε) =
β

2π
E
[ 1
C(n)(Snπ)n/2−1

∫ dn

bn

tn/2−2 e−tdt
]
,

where
bn =

Sn
2(â+ ε)

and dn =
Sn

2(â− ε)
.

The normalization constant

C(n) =
∫ ∞

0

β

2πan/2
exp(−Sn

2a
)da

=
1

2π(πSn)n/2−1
Γ(n/2− 1).

can be calculated analogously. Therefore, we have

P(â− ε < ā < â+ ε) =
1

Γ(n/2− 1)
E
[∫ dn

bn

tn/2−2e−tdt
]
, (1.17)

where β = (tn − t1)−1. Defining

I(N) =
∫ dn

bn

tn/2−2 e−tdt

where N = n/2− 2, we can rewrite Equation (1.17) as

P(â− ε < ā < â+ ε) =
1

Γ(N + 1)
E[I(N)]. (1.18)

Letting t = Nu we get

I(N) =
∫ dn

bn

tn/2−2 e−tdt

=
∫ dn/N

bn/N

e−uN (uN)NNdu

=
∫ dn/N

bn/N

NN+1 e−uN uNdu

= NN+1

∫ dn/N

bn/N

e−N(u−log u)du.

(1.19)

Since Sn is the sum of positive independent random variables with a mean value â, it
follows by the Law of Large Numbers [9] that

lim
n→∞

Sn
n

= â. a.s.
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Next, we use Lemma 1.11 to calculate the integral (1.19). To do this, we estimate the
interval [bn/N, dn/N ] in the limit for n→∞. Then

lim
n→∞

bn
N

= lim
n→∞

Sn
2N (â+ ε)

= lim
n→∞

nâ

2(n/2− 2)(â+ ε)

= lim
n→∞

n

(n− 4)(1 +
ε

â
)
>

1
2

∀ε < â.

Hence [bn/N, dn/N ] ⊂ [ 1
2 ,∞) a.s. when n is large enough.

Next, we apply Lemma 1.11 with f(u) = u− log u. The critical point is c = 1. Note
also that c ∈ [ 1

2 ,∞). The function f(u) behaves as

1. f(u), f ′(u), f ′′(u) are continuous functions ∀u ∈ [ 1
2 ,∞).

2. f(u) is decreasing ∀u ∈ [ 1
2 , 1] and f(u) is increasing ∀u ∈ [1,∞).

3. At the critical point u = 1, we have f ′′(1) = 1 > 0, i.e. the critical point is
non-degenerate.

Since all hypotheses of Corollary 1.11 are satisfied, we obtain

I(N) ∼ NN+1e−Nf(1)

√
2π√

Nf ′′(1)
as N →∞.

Then, from Stirling’s formula (1.12), we finally have the asymptotic behavior of the
integral in Equation (1.18):

lim
n→∞

I(N)
Γ(N + 1)

= lim
n→∞

NN+1e−Nf(1)

NN+1/2e−N
√

2π

√
2π√

Nf ′′(1)

= lim
n→∞

N1/2e−N(1−log 1)

e−N
√
N · 1

= 1. a.s.

The use of Lebesgue’s dominated convergence theorem leads to

lim
n→∞

P(â− ε < ā < â+ ε) = E[ lim
n→∞

I(N)
Γ(N + 1)

] = 1.

The theorem is proved. �

This theorem proves that the probability mass is all concentrated on the point â
when we measure the phenomena at the equidistant instants t1, ..., tn and n→∞. In
practice, this means that should be measuring for an infinite period of time.
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1.4 Study of Dpost(â,X) when n→∞ for t ∈ [0, 1]

Next, we rewrite the results of the previous section in the physical case t ∈ [0, 1] and
the sample points t̄1, ..., t̄n ∈ [0, 1]. This is based on the self-similarity of BM.

Consider the stochastic process

X(t̄, ω) ∼ X(
t

n
, ω).

Then, from self-similarity follows

X(t̄, ω) ∼
√

1
n
X(t, ω).

The previous theorem can be reformulated as

Theorem 1.20. Let X̄(n) = (X(t̄1, ω), ..., X(t̄n, ω))T be the measurement vector in

(1.9) with t̄i+1− t̄i =
h

n
, and ā a random variable with the distribution Dpost(â, X(n))

as given by Equation (1.10). Then, for all ε > 0 such that ε < â

lim
n→∞

P(â− ε < ā < â+ ε) = 1.

Proof. The proof of this theorem is very similar to the previous one, the crucial
point being to pay attention to the fact that the process is scaled. We note some
consequences of the self-similarity for the stochastic process X̄(n) with respect to the
process X(n).

1.
∣∣Σ̄(n)

∣∣ = (
1
n

)n
∣∣Σ(n)

∣∣ = (
â

n
)n

2. (Σ̄(n))−1 = n (Σ(n))−1 =
n

â
(Σ̃(n))−1

3. S̄n = X(n) Σ̃−1
(n) XT

(n)

where Σ(n) and Σ̄(n) are the covariance matrices of the processes X(n) and X̄(n),

respectively, and Σ̄(n) =
â

n
Σ̃(n).

With the above equalities and the same notation as in theorem 1.16, we can rewrite
Equation (1.19) as:

I(N) = NN+1

∫ d∗n

b∗n

e−N(u−log u)du,

where

b∗n =
S̄n n

2Nt (â+ ε)
and d∗n =

S̄n n

2Nt (â− ε)
.
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Remembering that S̄n is the sum of positive independent random variables with a
mean value â/n, in the limit for n→∞ we have

lim
n→∞

b∗n = lim
n→∞

nS̄n
2N (â+ ε)

= lim
n→∞

nâ

2 (n/2− 2) (â+ ε)
>

1
2

∀ε < â.

Hence [b∗n, d
∗
n] ⊂ [ 1

2 ,∞) a.s. when n is large enough.

Proceeding in the same way as in Theorem 1.16, the claim follows. �



Chapter 2

Retrieving either underlying
parameter of fractional Brownian
motion

The fractional Brownian motion (FBM) with a Hurst parameter H ∈ (0, 1) was intro-
duced in [16] as a centered Gaussian process ZH = {ZH(t), t ≥ 0} with a covariance

E(ZH(s), ZH(t)) = (ΣH)st =
1
2

(s2H + t2H − |t− s|2H). (2.1)

It is a process starting from zero almost surely. It has stationary increments, E(ZH(t)−
ZH(s))2 = |t− s|2H , is self-similar, i.e. ZH(αt) has the same distribution as αHZH(t).

The value of H determines the nature of the FBM:

1. if H = 1
2 , the process is a regular Brownian motion.

2. if H < 1
2 , the increments of the process are positively correlated.

3. if H > 1
2 , the increments of the process are negatively correlated.

In this chapter, we consider a stochastic process X with an amplitude parameter â
such that

X(t, ω) =
√
âZH(t, ω). (2.2)

The basic properties of this process are

1. E(X(t)) = 0 for all t ≥ 0
2. V ar(X(t)) = â |t|2H for all t ≥ 0

3. E[(X(t + h) − X(h))(X(s + h) − X(h))] =
â

2
(s2H + t2H − |t− s|2H), for all

t, s ≥ 0.

17
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The main task in this chapter is to generalize the results obtained in the previous
chapter. In the case of FBM, we cannot use the law of large numbers, since the
realizations are not independent. However, we will try to find a similar instrument
to prove that when H ∈ (0, 1) is fixed, the mass of the posterior distribution is
asymptotically concentrated on â also for the process (2.2).

2.1 The posterior distribution of the amplitude parameter â

In this section, we assume that the value of the Hurst parameter H is fixed and study
the posterior distribution of the amplitude parameter â.

Let X(n) = (X(t1, ω), ..., X(tn, ω))T be the vector of observed values of the process
defined in (2.2) at n time instants t1, ..., tn. The conditional distribution of the process
X(n), given that the random variable a is equal to â, is

Dpost(â,X(n)) = Dpr(â)D(X(n)|â). (2.3)

Since X(ti) is Gaussian and we suppose the prior distribution of the amplitude pa-
rameter â is a constant c, the posterior distribution equals

Dpost(â,X(n)) = β (2π)−n/2
∣∣(ΣH)(n)

∣∣−1/2 exp(−1
2
XT

(n)(ΣH)−1
(n)X(n)), (2.4)

where β = (tn − t1)−1.

To prove a generalization of Theorem 1.20, we proceed in the same way as we did in
the previous chapter. However, since the increments of FBM are not independent as
was the case of BM, the covariance matrix (ΣH)(n) is more complicated. In particular,
the quantity XT (ΣH)−1

(n)X, necessitates some additional work.

To solve this problem, we introduce the process called fractional Gaussian noise, fGn,
in the following way.

Let Y(n) = (Y1, ..., Yn)T be the realization of the stochastic process defined by

Yi = X(ti)−X(ti−1) (2.5)

where ti =
i

n
and t0 = 0 with i = 0, ..., n.

The process Y(n) is a strongly correlated stationary sequence. In particular, for
H > 1

2 , the correlation between the past and future is positive, increasing from 0 to 1
as H increases from 1

2 to 1. This means that a fGn with H > 1
2 is persistent and the

persistence increases with H. On the contrary, in the case H < 1
2 , this correlation is

negative and decreases from 0 to − 1
2 as H decreases from 1

2 to 0. This means that
a fGn with H < 1

2 , large positive values tend to be followed by large negative values
and vice versa.



2.2. THE INVERSE OF (ΓH)(N) 19

It is not difficult to calculate from Equation (2.1) the covariance matrix associated
with the process Y(n). For all i, j = 1, ..., n we have:

(
(ΓH)(n)

)
ij

=
1
2
(
|i− j + 1|2H + |i− j − 1|2H − 2 |i− j|2H

)
. (2.6)

Note that Yi ∼ η(0,
â

n2H
), giving

Dpost(â,Y(n)) = β (
2πâ
n2H

)−n/2
∣∣(ΓH)(n)

∣∣−1/2 exp
(
− n2H

2â
YT

(n)(ΓH)−1
(n)Y(n)

)
. (2.7)

Clearly this posterior distribution contains exactly the same information about the
parameter â as the posterior distribution in (2.4). Since the stochastic process Y(n) is
stationary, it will be more convenient in the calculation of the posterior distribution.

2.2 The inverse of (ΓH)(n)

First of all, note that since the stochastic process Y(n) is stationary, the covariance
matrix (ΓH)(n) is a Toeplitz matrix, i.e. a matrix of the form

[γj−k]nj,k=0.

In this section, we calculate the inverse of (ΓH)(n) explicitly. We prove that the inverse
of the covariance operator does exist and then use a result presented in [11] to find
a suitable representation for the elements of the covariance matrix. On the basis of
a numerical simulation, we construct a new matrix approximating the inverse of the
covariance matrix and calculate its elements.

We prove that (ΓH)(n) is invertible. To this aim, we first consider the infinite matrix
ΓH associated with the covariance operator and prove it is positive. Using the fact
that (ΓH)(n) is nothing else than the n × n upper-left corner of ΓH , we prove that
(ΓH)(n) is invertible.

First, define Z = {z ∈ CN|(zj2j) ∈ l∞} and CN = {(zj)∞j=1; zj ∈ C} and consider ΓH
to be a linear map Z → CN. Then

Proposition 2.8. ΓH is positive, i.e. 〈ΓHz, z〉 > 0 if z 6= 0.

Proof. To prove that ΓH is positive, we can study the spectral density. We need to
prove that 〈ΓHz, z〉 > 0 if the real vector z ∈ Z is not a zero vector.

To this aim, we rewrite the element in (2.6) as:

(ΓH)jk = γj−k =
∫ 1

2

− 1
2

e2πi(j−k)λf(λ)dλ (2.9)
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where

f(λ) = C
∣∣e2πiλ − 1

∣∣2 ∞∑
m=−∞

1

|λ+m|2H+1
− 1

2
≤ λ ≤ 1

2
, λ 6= 0,

with C > 0, is the spectral density of fGn (see [19]). Noting that ΓH is symmetric,
since f is even, and∣∣e2πiλ − 1

∣∣2 =
∣∣∣2πiλ+O(|λ|2)

∣∣∣2 = 4π |λ|2 +O(|λ|3) as |λ| → ∞,

we see that this spectral density is proportional to |λ|1−2H near λ = 0.

Therefore, the spectral density is continuous, if H < 1
2 . Moreover, the spectral density

is singular but integrable at λ = 0, if H > 1
2 .

Hence, we can write:

〈ΓHz, z〉 =
∫ 1

2

− 1
2

(
∞∑
j=0

e2πijλzj)(
∞∑
k=0

e−2πikλzk)f(λ)dλ

=
∫ 1

2

− 1
2

∣∣∣∣∣∣
∞∑
j=0

e2πijλzj

∣∣∣∣∣∣
2

f(λ)dλ =
∫ 1

2

− 1
2

|g(λ)|2 f(λ)dλ.

(2.10)

The function

g(λ) =
∞∑
j=0

e2πijλzj =
∞∑
j=0

zjw
j

is an analytic function on the disc and is not identically zero, and hence is equal to
zero at most on a countable number of points.

Since f(λ) > 0 for λ 6= 0, and since g(λ) = 0 at most on a set of Lebesgue measure
equal to zero, the integral in (2.10) is positive for each z 6= 0̄, i.e. (ΓH) is positive. �

Corollary 2.11. (ΓH)(n) is invertible.

Proof. It is enough to show that the matrix (ΓH)(n) defines an injective linear map
Cn → Cn. Assume z = (z1, ..., zn) is such that (ΓH)(n)z = 0. Since (ΓH)(n) is the
n × n upper-left corner of (ΓH), interpreting z = (z1, ..., zn, 0, ..., 0) ∈ Z, we obtain
〈(ΓH)(n)z, z〉 = 〈ΓHz, z〉 = 0, i.e. z = 0. �

To calculate the inverse of the covariance matrix, as already mentioned, we are going
to use a result presented in [11]. Since we do not use the theorem in the form presented
there, but only a part of it, we need some preliminary considerations.

Consider the system of equations
n∑
k=0

γj−kxk = δj0 (j = 0, ..., n), (2.12)
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which can be rewritten as

(x0, x1, ..., xn)T = (ΓH)−1
(n)(1, 0, ..., 0)T (2.13)

and since (ΓH)(n) is invertible, the elements (x0, x1, ..., xn) can be determined uniquely.
To get a factorization of the covariance matrix, we will use the following result

Theorem 2.14. If a Toeplitz matrix An = |aj−k|nj,k=0 satisfies

{ ∑n
k=0 aj−kxk = δj0 (j = 0, ..., n)∑n
k=0 aj−kyk−n = δjn (j = 0, ..., n)

with x0 6= 0, then An is invertible and its inverse is

A−1
n = x−1

0



x0 0 . . . 0
x1 x0 . . . 0
. . . . . . . . . . . .

xn xn−1 . . . x0



y0 y−1 . . . y−n

0 y0 . . . y−n+1

. . . . . . . . . . . .

0 0 . . . y0



−


0 0 0 . . . 0 0
yn 0 0 . . . 0 0

y−n+1 y−n 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

y−1 y−2 y−3 . . . y−n 0




0 xn xn−1 . . . x1

0 0 xn . . . x2

. . . . . . . . . . . . . . .

0 0 0 . . . xn

0 0 0 . . . 0




Proof. See [11]. �

To prove that the matrix (ΓH)(n) satisfies the hypothesis of Theorem 2.14 in addition
to Equation (2.13), it is sufficient to prove that for the process in Equation (2.5), the
element x0 is different from zero. Suppose, by contradiction, that x0 = 0, and rewrite
Equation (2.12) as 

x1γ1 + x2γ2 + ...+ xnγn = 1
x1γ0 + x2γ0 + ...+ xnγn−2 = 0

. . .

x1γn + x2γn−1 + ...+ xnγ0 = 0

This is a system with n+ 1 equations and n unknowns. It is enough to consider the
last n equations to solve the system. We have

(x1, ..., xn)T = (ΓH)−1
(n−1)(0, ..., 0)T .

Thus, the fact that x0 = 0 implies that the vector (x0, x1, ..., xn) is a null vector. This
is a contradiction.
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Since (ΓH)(n) is symmetric, γj = γ−j . This implies that xi = y−i (i = 0, ..., n) in
the hypothesis of the above theorem. Then, since the system of Equations (2.13) is
satisfied and x0 6= 0, the assumptions of Theorem 2.14 are satisfied.

From the factorization in Theorem 2.14 it follows that the elements of (ΓH)−1
(n) can be

calculated for all j, k = 1, ...n from the formula (see [11]):(
(ΓH)−1

(n)

)
jk

= g
(n)
jk = g

(n)
j−1,k−1 + x−1

0

[
xj xk − xn+1−j xn+1−k

]
(2.15)

where

g
(n)
0k = xk g

(n)
k0 = xk (k = 0, 1, ..., n).

Now that we have a recursive formula for g(n)
jk , he following result on the asymptotic

behavior of g(∞)
jk as k →∞ can be stated:

Proposition 2.16. With j fixed and 1
2 < H < 1

(
(ΓH)−1

)
jk

= g
(∞)
k = H(2H − 1) |k|2H−2 +O(

1
k2

) as k →∞.

Proof. As shown in the proof of Proposition 2.8, the function f(λ) has an integrable
singularity of the type |λ|1−2H at origin.

Since j is fixed, we can suppose without loss of generality that j = 0. Then

(
(ΓH)−1

)
0k

= g
(∞)
k =

∫ 1
2

− 1
2

e−2πikλ

f(λ)
dλ.

Using the result shown in the proof of Proposition 2.8, we can write the asymptotic
behavior of the spectral density when |λ| → 0:

f(λ) = C
∣∣e2πiλ − 1

∣∣2 ∞∑
m=−∞

1

|λ+m|2H+1

= C
∣∣e2πiλ − 1

∣∣2 ( |λ|−2H−1 +
∑
m6=0

1

|λ+m|2H+1

)
= C(4π |λ|2 +O(|λ|3)

(
|λ|−2H−1 +

∑
m 6=0

1

|λ+m|2H+1

)
= C

(
|λ|−2H+1 +

∑
m 6=0

|λ|2

|λ+m|2H+1

)
r(λ),

where r(λ) = 4π +O(|λ|3) as |λ| → ∞.
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Letting R(λ) = 1/Cr(λ), we have

1
f(λ)

=
1

Cr
(
λ)(|λ|−2H+1 +

∑
m 6=0

|λ|2

|λ+m|2H+1

)
=

R(λ)

|λ|−2H+1

( 1
1 + φ(|λ|)

)
where

φ(|λ|) =
∑
m 6=0

( |λ|
|λ+m|

)2H+1
.

Remark 2.17. Noting that φ(|λ|) = O(|λ|2H+1) as |λ| → 0 we have

• If H > 1
2 the function φ(|λ|) is twice differentiable at the origin.

• If H < 1
2 the function φ(|λ|) is once differentiable at the origin.

Thus

g
(∞)
k =

∫ 1
2

− 1
2

e−2πi(k)λ

f(λ)
dλ

=
∫ 1

2

− 1
2

e−2πikλ |λ|2H−1 Φ(|λ|)dλ,
(2.18)

where

Φ(|λ|) =
R(λ)

1 + φ(|λ|)
.

Since 2H + 1 ≤ 3 for each H ∈ (0, 1), we have

Φ(|λ|) =
1

4πC +O(|λ|2H+1)
as |λ| → 0.

To prove the theorem, one has to study the asymptotic behavior of the integral in
(2.18) as k →∞. Using the result in Proposition 2.19 presented below and Equation
(2.18), it follows that for 1

2 < H < 1

g
(∞)
k =

∫ 1
2

− 1
2

e−2πi(k)λ |λ|2H−1 Φ(|λ|−2H−1)dλ

=
1

2πC
Γ(2H)eiπH |k|−2H +O(|k|−2H−1) as k →∞.

This proves the theorem. �
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Proposition 2.19. (Ederlyi’s theorem) If g(λ) ∈ C2 and 0 < β < 1 then:∫ a

0

|λ|β−1
g(λ)eiγx

α
dλ ∼ a0γ

−βα +O(γ−
1+β
α ) γ →∞

where

aj =
g(j)(0)
j!α

Γ(
j + β

α
) exp(

iπ(j + β)
2α

).

Proof. See for example [6], page 157. The proof presented in [6] is for the case g(λ) ∈
C∞. In going through the proof of Theorem 2.19, we note that if g(λ) is at least
twice differentiable at the origin, we can write the term a0 and give an estimate of
the behavior of the remainder as γ →∞. �

Remark 2.20. The proof of proposition 2.16 is usually given using the Tauberian
theorem. We prove that neither in that case we can relax the restriction on the Hurst
parameter H.

To do this, consider the function h(x) = (1 − x)2H − 2 + (1 + x)2H . Calculating the
Taylor series for h(x) around x = 0 we have

h(x) = 2H(2H − 1)x2 +O(x2).

Letting x = 1/k with

γk =
1
2
k2Hh(

1
k

), k ≥ 1

and we have

γk = H(2H − 1) |k|2H−2 +O(
1
k2

), as k →∞.

Applying the Tauberian theorem shown in [22] we can rewrite the integral in (2.18).
However, to be able to use the Tauberian theorem, the process should have long-range
dependence, i.e. 1

2 < H < 1.

Figure 2.1 shows a plot of the solution of Equation (2.13) calculated from the 90× 90
covariance matrix of a realization of fGn measured over the time interval [0, 1]. Hence,
from the computer simulations, it would seem that, for n large enough, only terms
gj−k with |j − k| < 2 contribute significantly to

(
(ΓH)−1

(n)

)
. For this reason, we shall

henceforth consider the following approximate problem:

Given the posterior distribution

Dapp
post(â,Y(n)) = β(

2πâ
n2H

)−n/2
∣∣(ΓH)(n)

∣∣−1/2 exp(−n
2H

2â
YT

(n)(ΓH)−1
(n),appY(n)), (2.21)
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Figure 2.1: Solution vector of Equation (2.13).

where

(ΓH)−1
(n),app =



c1 c2 0 · · · · · · · · ·
c2 c1 c2 0 · · · · · ·
0 c2 c1 c2 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 c2 c1 c2

· · · · · · · · · 0 c2 c1


, (2.22)

we prove that limn→∞P(â− ε < ā < â+ ε) = 1.

In the following, the elements of the matrix (ΓH)−1
(n),app are calculated using the

method illustrated in [23]. This paper gives a result which is theoretically quite
similar to the one we found using Theorem 2.14, but simpler to apply numerically.

Suppose that (ΓH)−1
(n) ≈ (ΓH)−1

(n),app. Thus (ΓH)−1
(n),app(ΓH)(n) ≈ I(n), where I(n) is
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the n-dimensional identity matrix. This means
c1 c2 0 · · ·
c2 c1 c2 0
· · · · · · · · · · · ·
· · · 0 c2 c1



γ0 γ1 γ2 · · ·
γ1 γ0 γ1 · · ·
· · · · · · · · · · · ·
· · · γ2 γ1 γ0

 ≈


1 0 · · · · · ·
0 1 0 · · ·
· · · · · · · · · · · ·
· · · · · · 0 1

 .

One way of calculating numerically the value of the elements ci with i = 1, 2 is to
consider the 3× 3 upper-left corner of the full matrices (ΓH)(n) and (ΓH)−1

(n),app and,
for example, to solve the equation

(c2, c1, c2)[(ΓH)(n)]3×3 = (0, 1, 0).

In this way we get the explicit solution

ci = ((ΓH)−1
(n))2,(2+i−1).

A 3× 3 matrix is the smallest we can consider in the case of an approximate inverse
covariance matrix with three diagonal elements different from zero. On the other
hand, it is easily seen that it is not useful to consider a larger matrix in this case.
If we, for example, consider a 4 × 4 matrix, then in each row we have at least one
element equal to zero. If we consider the equation

(c2, c1, c2, 0)[(ΓH)(n)]3×3 = (0, 1, 0, 0),

the only additional information we get from this solution respect to the previous one
is that c3 = 0. Since we suppose that we have only three diagonals different from
zero, it is enough to consider the 3× 3 matrix to calculate the value of the elements.

In the following, the calculation of ci with i = 1, 2 in our problem is shown. We have

[(ΓH)(n)]3×3 =

 1 l(H) b(H)
l(H) 1 l(H)
b(H) l(H) 1

 , (2.23)

where
l(H) = 22H−1 − 1 (2.24)

and

b(H) =
32H − 22H+1 + 1

2
. (2.25)

Because of the simple structure of [(ΓH)(n)]3×3, we can calculate inverse:

[(ΓH)(n)]−1
3×3 =

1∣∣[(ΓH)(n)]3×3

∣∣
 1− l(H)2 l(H)(b(H)− 1) l(H)2 − b(H)
l(H)(b(H)− 1) 1− b(H)2 l(H)(b(H)− 1)
l(H)2 − b(H) l(H)(b(H)− 1) 1− l(H)2


(2.26)
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where ∣∣[(ΓH)(n)]3×3

∣∣ = (1− b(H))(1 + b(H)− 2l(H)2). (2.27)

Then we can write:

c1(H) =
(
[(ΓH)(n)]3×3

)
2,2

=
1 + b(H)

1 + b(H)− 2l(H)2
(2.28)

and

c2(H) =
(
[(ΓH)(n)]3×3

)
2,3

= − l(H)
1 + b(H)− 2l(H)2

. (2.29)

We now have explicit values for c1(H) and c2(H). This will allow us to calculate the
exponential term YT

(n)(ΓH)−1
(n),appY(n).

2.3 Convergence of the quadratic term Sn

Let Sn = YT
(n)(ΓH)−1

(n),appY(n). Because of the simple structure of the approximation
matrix (ΓH)−1

(n),app, we have

Sn = c1Tn + 2c2Un

where

Tn =
n∑
i=1

Y 2
i (2.30)

and

Un =
n−1∑
i=1

YiYi+1. (2.31)

As already noted in the beginning of this chapter, the stochastic process Y(n) is
stationary, but the variables Yi are not independent, even if they are identically dis-
tributed. More work is needed to study the convergence of the sum Sn.

We start by studying the asymptotic behavior of the sums Tn and Un. To this aim,
we apply the Birkhoff-Khinchin theorem (see [10]) to get a result which is similar to
the strong law of large numbers for the process Y(n).

Since ti = i/n, every time a change in the value of n gives a new set on points. To
avoid this problem, we need a new process.

Consider the process defined by

Y inf
i = X(t̄i)−X(t̄i+1)

where t̄i − t̄i−1 = 1 for i = 1, ..., n and t̄0 = 0.
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Next, define

T inf
n =

n∑
i=1

(Y inf
i )2 (2.32)

and

U inf
n =

n∑
i=1

Y inf
i Y inf

+1 . (2.33)

Note that the sequences T inf
n and U inf

n are stationary, since Yinf
(n) is a stationary process.

The Birkhoff-Khinchin theorem can be applied to this process. Note that the time
runs from 0 to infinity as n→∞. In particular, we will use the following corollary of
the Birkhoff-Khinchin theorem:

Corollary 2.34. Let {Xt} denote a stationary sequence and suppose that E{X0} <
∞. Then, for any positive integer m, with probability 1 the limit

lim
n→∞

1
n

n+m∑
k=n

Xk = X∗

exists, and E{X∗} = E{X0}.

Proof. See [10]. �

From Corollary 2.34 it follows that

lim
n→∞

T inf
n

n
= T inf

and

lim
n→∞

U inf
n

n− 1
= U inf

with
E(T inf) = E((Y inf

0 )2) = Var((Y inf
0 )) = â

and
E(U inf) = E(Y inf

i Y inf
i+1) = Cov(Y inf

i Y inf
i+1) = â(22H−1 − 1).

Since the process Y(n) is H-self-similar, i.e. Y (αt) has the same distribution as
α−HY (t), and n−HYi has the same distribution as Y inf

i .

Therefore, it follows that in the limit n→∞

Tn
n
∼ T (n)

and
Un
n− 1

∼ U(n)
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with

E(T (n)) = E((Y0)2) = Var((Y0)) =
â

n2H

and

E(U(n)) = E(YiYi+1) = Cov(Yi, Yi+1) =
â

n2H
(22H−1 − 1).

Thus for the quadratic term Sn in the limit for n→∞, we have

E(Sn) = E
(
c1(H)Tn + 2c2(H)Un)

∼ (c1(H)nE(T (n)) + 2c2(H)(n− 1)E(U(n))
)

=
(
n

â

n2H
c1(H) + 2

â(n− 1)(22H−1 − 1)
n2H

c2(H)
)

=
â

n2H

n(1 + b(H))− (n− 1) l(H)2

1 + b(H)− 2l(H)2
,

(2.35)

where l(H) and b(H) are defined in (2.24) and (2.25).

2.4 Study of Dapp
post(â,Y) when n→∞ for t ∈ [0, 1]

In the following we will prove a result analogous to Theorem 1.20 in the case of FBM.
In the computations, instead of the inverse covariance matrix (ΓH)(n), we use its
approximation (ΓH)−1

(n),app.

Theorem 2.36. Let Y(n) = (Y1, ..., Yn)T be the measurement vector in Equation

(2.5) with 1
2 < H < 1 and ti+1 − ti =

h

n
, and ā a random variable with distribution

Dapp
post(â,Y(n)) as given in Equation (2.21). Then for all ε > 0 such that ε < â,

lim
n→∞

P(â− ε < ā < â+ ε) = 1.

Proof. Starting from Equation (2.21), we have

P(â− ε < ā < â+ ε)

= E
[ 1
C(n)

∫ â+ε

â−ε

βnnH

(2πa)n/2
∣∣(ΓH)(n)

∣∣− 1
2 exp(−n

2H

2a
YT

(n)(ΓH)−1
(n),appY(n)

)
da
]

=

∣∣(ΓH)(n)

∣∣− 1
2

C(n)

β

πn/2
E
[ ∫ â+ε

â−ε
(
n2H

2a
)n/2 exp(−n

2H

2a
Sn)da

]
.

(2.37)

Since c1(H) > 2 |c2(H)| for each H ∈ ( 1
2 , 1), the eigenvalues of the matrix (ΓH)−1

(n),app

are positive, i.e. the matrix (ΓH)−1
(n),app is positive definite and the sum Sn is positive.
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By Legesgue’s dominated convergence theorem, Equation (2.37) can be written as

P(â− ε < ā < â+ ε)

=

∣∣(ΓH)(n)

∣∣− 1
2

C(n)

β

πn/2

∫ â+ε

â−ε
E[(

n2H

2a
)n/2 exp(−n

2H

2a
Sn)da]

≥
∣∣(ΓH)(n)

∣∣− 1
2 β

C(n)(πE(Sn))n/2

∫ ā+ε

ā−ε
(
E(Sn)n2H

2a
)n/2 exp(−n

2H

2a
E(Sn))da

where C(n) is a normalization constant.

Changing the variable t = E(Sn)/2a and calculating the normalization constant as in
the proof of Theorem 1.16, we obtain

P(â− ε < ā < â+ ε) ≥ c

Γ(n/2− 1)

∫ dn

bn

tn/2−2 e−tdt =
I(N)

Γ(N + 1)

where bn =
E(Sn)n2H

2(â+ ε)
, dn =

E(Sn)n2H

2(â− ε)
and N =

n

2
− 2.

Letting t = Nu we get

I(N) =
∫ dn/N

bn/N

e−uN (uN)N Ndu = NN+1

∫ dn/N

bn/N

e−N(u−log u)du.

As in the case of BM, we need to estimate the interval [bn/N, dn/N ] in the limit for
n→∞. From Equation (2.35) we get in the limit for n→∞, ∀ε < â

lim
n→∞

bn
N

= lim
n→∞

E(Sn)n2H

2N (â+ ε)

= lim
n→∞

â n2H(n (1 + b(H))− (n− 1)l(H)2)
2n2H(1 + b(H)− 2 l(H)2)(n/2− 2)(â+ ε)

>
1
2
.

Hence [bn/N, dn/N ] ⊂ [ 1
2 ,∞).

Then, applying Lemma 1.11 and using Stirling’s formula in the same way as in the
proof of Theorem 1.16, we obtain

P(â− ε < ā < â+ ε) ≥ I(N)
Γ(N + 1)

∼ NN+1e−Nf(c)

NN+1/2 e−N
√

2π

√
2π√

Nf ′′(c)

=
N1/2e−N(1−log 1)

e−N
√
N · 1

= 1, as n →∞.

Since a probability cannot be greater than 1 the statement is proved. �

Summarizing, in this section we have studied the problem of estimating the amplitude
parameter of FBM. The main goal was to prove that the associated discrete problem
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gives the correct solution in the limit. We obtained an encouraging result: if the
number of realizations is large enough, the estimator ā for the amplitude parameter
is equal to â with probability one. Unfortunately, we have not been able to prove
this result for the exact problem as was the case in BM. Since we can no more use
the law of large numbers, we constructed an ergodic new process and calculated an
approximation to the inverse covariance matrix in order to be able to calculate the
quadratic term. Moreover, due to a technical assumption, the inverse covariance
matrix could only be approximated for 1

2 < H < 1. Nevertheless, the computer
simulations give support for believing that the result is also valid for the original
problem.

2.5 The posterior distribution of the Hurst parameter

In this section, we study the behavior of the posterior distribution as a function of
the Hurst parameter H.

We would like to prove a result analogous to Theorem 2.36 for H.

Consider a FBM realization with an amplitude parameter â and Hurst parameter Ĥ.
In this case, for simplicity, we will take the amplitude parameter as known and equal
to one, so the process is:

Z(t) = ZĤ(t, ω). (2.38)

The relations formulated in the beginning of this chapter become in this case

1. E(Z(t)) = 0, for all t ≥ 0

2. V ar(Z(t)) = |t|2Ĥ , for all t ≥ 0

3. E[(Z(t+ h)−Z(t))(Z(t+ h)−Z(t))] =
(
(ΣĤ)(n)

)
st

= 1
2 (s2Ĥ + t2Ĥ − |t− s|2Ĥ)

for all t, s ≥ 0.

Let Z(n) = (Z(t1, ω), ..., Z(tn, ω))T be the vector of the observed values of the process
defined above at n time instants t1, ..., tn. The conditional distribution of the process
Z(n) given that the random variable H is equal to Ĥ is

Dpost(Ĥ,Z(n)) = Dpr(Ĥ)D(Z(n)|Ĥ). (2.39)

As mentioned in section 2.1, we suppose there is no prior information on the value of
the parameter Ĥ, i.e. Dpr(Ĥ) = c and the posterior distribution is

Dpost(Ĥ,Z(n)) = β(2π)−n/2
∣∣(ΣĤ)(n)

∣∣−1/2 exp(−1
2

ZT(n)(ΣĤ)−1
(n)Z(n)), (2.40)

where β = (tn − t1)−1.
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Next, we prove that the mass of the posterior distribution of the Hurst parameter H is
asymptotically concentrated on the point Ĥ as happened for the amplitude parameter
a.

Once again, due to the complexity of the covariance matrix, we consider the fGn
associated to the process Z(t).

Let W(n) = (W1, ...,Wn)T be the realization of the stochastic process defined by

Wi = Z(ti)− Z(ti−1)

where ti =
i

n
and with i = 0, ..., n.

Let (Γ̂H)(n) be the covariance matrix of the process W(n). Then

(Γ̂H)(n) =
1
n2H

(ΓH)(n),

where (ΓH)(n) is the matrix defined in (2.6), and the posterior distribution the un-
known parameter H for the process W(n) is

Dpost(H,W(n)) = β (
2π
n2H

)−n/2
∣∣(ΓH)(n)

∣∣−1/2 exp
(
− n2H

2
WT

(n)(ΓH)−1
(n)W(n)

)
.

Since the matrix (ΓH)(n) is exactly the one defined in Equation (2.6), we can proceed
in the same way than in section 2.2 to calculate its inverse.

The measurement vector W(n) is fixed and does not depend on H. On the other hand,
the determinant of the covariance matrix depends on H and has to be calculated
explicitly. Again, due to the complexity of the covariance matrix, it is not possible to
do this analytically. We use an approximate inverse covariance matrix.

It is clear that for the determinant of the covariance matrix satisfies∣∣(ΓH)(n)

∣∣ =
1∣∣∣(ΓH)−1

(n)

∣∣∣ .
Since the matrix (ΓH)−1

(n),app is a band matrix, we need the following lemma to calcu-
late its determinant.

Lemma 2.41. Suppose f, g ∈ C1[0, 1] and suppose that f = |f | ≥ 2 |g|. Let M(n,H)
be an n × n symmetric tridiagonal Toeplitz matrix such that M(n,H)11 = f(H) and
M(n,H)12 = g(H). Denote by h(H) =

√
f(H)2 − 4g(H)2 and by j(H) = f(H) +

h(H). Then

det(M(n,H)) ∼ 1
h(H)

(j(H)
2

)n+1

(2.42)

and if j′(H) 6= 0 then

∂H
(

det(M(n,H))
)
∼ nj′(H)

2h(H)

(j(H)
2

)n
. (2.43)
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Proof. For simplicity, we will consider the matrix

N(n,H) =



1 c 0 · · · · · · · · ·
c 1 c 0 · · · · · ·
0 c 1 c 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 c 1 c

· · · · · · · · · 0 c 1


,

where c = g(H)/f(H) and |c| < 1
2 .

Then
detM(n,H) = f(H)n detN(n,H).

We note that the aymptotic relations (2.42) and (2.43) hold if we show that

D(n) = detN(n,H) ∼ 1
a

(1 + a

2

)n+1

= λ(n) with a =
√

1− 4c2

and that
∂H
(

det(M(n,H))
)
∼ ∂H

(
λ(n)

)
.

To this aim, we define R(n) by

D(n) = λ(n)R(n)

and show that
R(n)−→ 1

n→∞

and
∂H
(
λ(n)

)
−→ 0
n→∞

.

In the following, we use the Fibonacci-type recursion equation

D(n) = D(n− 1)− c2D(n− 2) ∀n ≥ 2, (2.44)

and define D(0) = D(1) = 1 so that Equation (2.44) is true for n = 2.

For ∆(n) = R(n)−R(n− 1) we can write the recursion equation

∆(n) = c2
λ(n− 2)
λ(n)

∆(n− 1). (2.45)

Defining

ρ = c2
λ(n− 2)
λ(n)

=
1− a
1 + a

< 1,

Equation (2.45) can be rewritten as

∆(n) = ρ∆(n− 1) = · · · = ρn−1∆(1).
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This is equivalent with

R(n)−R(n− 1) = ρn−1∆(1)
R(n− 1)−R(n− 2) = ρn−2∆(1)

. . .

R(1)−R(0) = ∆(1).

This means that

R(n)−R(0) = ∆(1)
n−1∑
i=0

ρi,

and hence

R(n) = R(0) +
R(1)−R(0)

1− ρ
(1− ρn).

Since

R(0) =
2a

1 + a
= 1− ρ and R(1) =

4a
(1 + a)2

=
2R(0)
1 + a

,

it follows
R(1)−R(0) = R(0)ρ.

Hence, since
R(n) = 1− ρn+1

it easily seen that
R(n)−→ 1

n→∞

and that
∂HR(n) = ∂H

(
1− ρn+1

)
−→ 0
n→∞

.

This proves the theorem. �

In particular, if we consider
f(H) = c1(H)

and
g(H) = c2(H)

with c1(H) and c2(H) as defined in Equations (2.28) and (2.29), it follows that the
matrix (M(n,H)) of Lemma 2.41 coincides with the approximate inverse covariance
matrix (ΓH)−1

(n),app. It can be easily shown that c1(H) ≥ 2 |c2(H)| for each H ∈
(0, 1), and we can use the result of Lemma 2.41 to calculate explicitly the posterior
distribution.

In the rest of this section, we will consider the following problem. Given the posterior
distribution

Dapp
post(H,W(n)) = β (

2π
n2H

)−n/2
∣∣(ΓH)(n),app

∣∣−1/2 exp(−n
2H

2
WT

(n)(ΓH)−1
(n),appW(n)),

(2.46)
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Figure 2.2: Posterior distributions of a realization of the same process with a different
number of measurements.

where (ΓH)−1
(n),app as in (2.6), prove that

lim
n→∞

P(Ĥ − ε < H̄ < Ĥ + ε) = 1,

where H̄ is the estimator of the Hurst parameter.

Using the notation of section 2.3, we can rewrite the posterior distribution as

Dapp
post(H,W(n)) = β(

2π
n2H

)−n/2
1

h(H)

(j(H)
2

)n+1

exp
(
− n

2H

2
(c1Qn+2c2Vn)

)
, (2.47)

where

Qn =
n∑
i=0

W 2
i (2.48)

and

Vn =
n−1∑
i=0

Wi ·Wi−1 (2.49)
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and j(H) and h(H) as defined in Lemma 2.41.

To proceed in the same manner as in the case of the amplitude parameter, we should
integrate Equation (2.47) with respect to H. In this way we would get a result
analogous to Theorem 2.36.

Unfortunately, we have not been able to evaluate the integral of the posterior distribu-
tion (2.47) asymptotically with respect to H. As shown in Figure 2.2, the numerical
simulations show that the mass of the posterior distribution tends to concentrate on
the true value of the Hurst parameter when the number of observations increases.

Even if weaker then the original proposition, it would be a good result from the
applied point of view to prove that the posterior distribution Dapp

post(H,W(n)) attains
its maximum for H = Ĥ as n tends to infinity. This would guarantee that the
maximum of the posterior distribution gives the true value for the estimator based on
the approximate inverse covariance matrix. This would also prove that we can solve
the associated discrete problem and get the asymptotically correct value of H by the
statistical inversion method.

In order to calculate the maximum, we have to calculate the derivative of the posterior
distribution in (2.47). We have succeeded in proving that the derivative of the poste-
rior distribution is positive for H < Ĥ and negative for H > Ĥ when n is large enough.
From this, we can deduce that the posterior distribution is an increasing function for
H < Ĥ and a decreasing one for H > Ĥ. Hence the posterior distribution attains its
maximum value at H = Ĥ.

In the following theorem, we study the sign of the derivative of the posterior distri-
bution.

Theorem 2.50. Let
D′(H) =

d

dH
Dapp
post(H,W(n)). (2.51)

Then for n large enough, the function D′(H) is positive for H < Ĥ and negative for
H > Ĥ with H ∈ ( 1

2 , 1) and n > m.

Proof. We start by calculating the derivative of the posterior distribution in (2.47)with
respect to H. We obtain

d

dH
Dapp
post(H,W(n)) = β(2π)−n/2 nnH

1
h(H)

(j(H)
2

)n+1

exp
(
− n2H

2
(c1Qn + 2c2Vn)

)
·
[
n log n+

nj′(H)
j(H)

− n2H log n(c1Qn + 2c2Vn)− n2H

2
(
d

dH
c1Qn + 2

d

dH
c2Vn)

]
,

(2.52)

where c1(H) and c2(H) are defined in (2.28) and (2.29) and j(H) and h(H) in Lemma
2.41.

The elements c1(H) and c2(H) depend on H, but not on n. Using the same argument
as in section 2.3, it follows in the limit for n→∞ from the Corollary 2.34 that
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Qn
n
∼ Q(n) and

Vn
n− 1

∼ V (n)

with

E(Q(n)) = E((W0)2) = Var(W0) =
1
n2Ĥ

and

E(V (n)) = E(WiWi−1) = Cov(Wi,Wi−1) =
1
n2Ĥ

(22Ĥ−1 − 1).

Since Qn and Vn do not depend on H, we can deduce the following by studying each
term of (2.52):

1. The term

β(2π)−n/2 nnH
1

h(H)

(j(H)
2

)n+1

exp(−n
2H

2
(c1Qn + 2c2Vn))

is always positive ∀H ∈ ( 1
2 , 1).

2. The term

[
n log n+

nj′(H)
j(H)

− n2H log n(c1Qn + 2c2Vn)− n2H

2
(
d

dH
c1Qn + 2

d

dH
c2Vn)

]
,

(2.53)
is the one which determines the sign in Equation (2.52).

For large enough n, there are only two important terms when studying the sign in
(2.53). The first one is n log n and the second one, as n tends to infinity, is

n2H log n
(
c1(H)Qn + 2c2(H)Vn

)
∼ n2H log n

(
nc1(H)Q(n) + 2(n− 1)c2(H)V (n)

)
= n2H log n

(
nc1(H)n−2ĤQinf + 2(n− 1)c2(H)n−2ĤV inf

)
= n2(H−Ĥ) log n

(
nc1(H)Qinf + 2(n− 1)c2(H)V inf

)
,

where Qinf and V inf are analogous to T inf and U inf , defined in Equations (2.32) and
(2.33), do not depend on n.

In particular, if H < Ĥ then (2(H − Ĥ) + 1) < 1, the dominating term in (2.53) is
n log n and the derivative in (2.52) is positive.

On the other hand, if H > Ĥ then (2(H − Ĥ) + 1) > 1, hence the dominating term
in Equation (2.53) is

n2(H−Ĥ)

2
log n

(
nc1(H) + 2(n− 1)c2(H)(22Ĥ−1 − 1)

)
.
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Since (nc1(H) + 2(n− 1)c2(H)(22Ĥ−1 − 1)) is positive for

n >
2c2(H)(22Ĥ−1 − 1)

c1(H) + 2c2(H)(22Ĥ−1 − 1)

and for 1
2 < H < 1, the derivative in Equation (2.52) is negative. �

Summarizing, we have studied the problem of retrieving the Hurst parameters from
the realization of FBM. We considered the approximate problem in order to com-
pute the posterior distribution. We studied the sign of the derivative of the function
Dapp
post(H,W(n)) for 1

2 < H < 1 and proved that the solution obtained by applying the
statistical inversion method coincides with the true value of the estimator when the
number of measurements is large enough.



Chapter 3

Retrieving the underlying
parameters of the sum of two FBMs

Physical measurements as a function of time contain trend and noise. The main
problem is to succeed in cleaning up the data from the noise. Traditionally, when
modelling physical phenomena, the noise is assumed to be Gaussian.

This characteristic is preserved when formulating the following problem.

We model both the trend and the noise as realizations of FBM. The measurement
vector (X(t1), ..., X(tn)) is supposed to be the sum of these two realizations. In
particular, X(ti) = Xt(ti) + Xn(ti), where Xt(ti) is the realization modelling the
trend with underlying parameters at and Ht, and Xn(ti) the realization modelling the
noise with parameters an and Hn. Our goal is to estimate the underlying parameters
so that we can retrieve the trend.

The problem is to identify the signals, i.e. to retrieve the amplitudes at, an and Hurst
parameters Ht and Hn.

Intuitively, this ought to be possible at least for the dominating part of the measured
signal, i.e. the one with the smaller Hurst parameter Hn. In the following, in order
to get a better understanding of the problem, we use different scenarios.

There are obviously cases where it is not possible to recover all four parameters
at, an, Ht and Hn. For example, if we consider the case Ht = Hn, we have two
realizations of the same process with different amplitude parameters. We show in
that in this case, one can only hope to recover the sum at + an of the corresponding
amplitude parameters.

After the case Ht = Hn we can suppose that Ht > Hn without loss of generality.
Note that a sample path of FBM gets smoother as the Hurst parameter H increases.
In practice, the realization of a FBM with a larger Hurst parameter Ht models well
the trend contained in the measurement data. It is therefore reasonable to assume
that the trend amplitude at is larger than the noise amplitude an, since the noise is
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usually much smaller than the trend. For this reason, we assume that at > an.

3.1 The case H t = Hn

The first case is the sum of two realizations of FBM both with the same Hurst pa-
rameter. We show that we can recover the sum at + an asymptotically.

To this aim, we consider two measurement vectors XA
(n) and XB

(n). Each of them is
the sum of two FBMs. Starting with the assumption that the posterior distributions
of the measurement vectors are the same, we study whether the amplitude parameters
are the same.

Consider two stochastic processes XA
(n) = (XA(t1), ..., XA(tn)) and XB

(n) = (XB(t1), ...,
XB(tn)) defined as:

XA(ti) =
√
atAZHt

A
(ti) +

√
anAZHn

A
(ti)

XB(ti) =
√
atBZHt

B
(ti) +

√
anBZHn

B
(ti).

(3.1)

Since we are going to study the case of two realizations with the same Hurst param-
eters, we suppose Ht

A = Hn
A = HA and Ht

B = Hn
B = HB . We can then rewrite the

Equations (3.1) as:

XA(ti) =
√
atAZHA

(ti, ω1) +
√
anAZHA

(ti, ω2)

XB(ti) =
√
atBZHB

(ti, θ1) +
√
anBZHB

(ti, θ2),
(3.2)

where ωi, θi ∈ Ω for i = 1, 2. Note that the two components of each sum can be
different realizations of the same FBM.

In order to deal with the two covariance matrices and their inverses, we consider the as-
sociated fGn and define YA

(n) = (Y A(t1), ..., Y A(tn)), and YB
(n) = (Y B(t1), ..., Y B(tn))

as

Y A(ti) = XA(ti)−XA(ti−1)

Y B(ti) = XB(ti)−XB(ti−1).
(3.3)

The covariance matrices (Λk)(n) with k = A,B for the processes defined in (3.3) will
be of the type:

(Λk)(n) =
n2Hk

atk + ank
(ΓHk

)(n),

where (ΓHk
)(n) is the covariance matrix as defined in Equation (2.6).

As in section 2.2, we consider the approximate problem in order to be able to calculate
the posterior distribution explicitly.



3.1. THE CASE HT = HN 41

Using the notation in section 2.3, the approximate posterior distributions for the
processes Yk

(n) with k = A,B as a function of the unknown parameters H, at and an

with 1
2 < H <1 are:

Dapp
post(Y

k
(n), H, a

t, an) =

β

(2π)
1
2
nnH(

at + an

n2H
)

n
2
∣∣(ΓH)(n),app

∣∣− 1
2 exp

(
− n2H

2(at + an)
(Yk

(n))
T (Γ−1

H )(n),appYk
(n)

)
=

β

(2π)
1
2
nnH(

at + an

n2H
)

n
2

1
h(H)

(j(H)
2

)n+1

exp
(
− n2H

2(at + an)
(c1(H)T kn + 2c2(H)Ukn)

)
(3.4)

where T kn =
∑n
i=0(Y k(ti))2 and Ukn =

∑n
i=0 Y

k(ti)Y k(ti+1) do not depend on H, at

or an.

The problem of estimating the underlying parameters of the sum of two FBMs with
the same Hurst parameter leads to the following theorem:

Theorem 3.5. Consider the stochastic processes YA
(n) and YB

(n) defined in (3.3) with
1
2 < HA, HB <1. Then

Dapp
post(Y

A
(n), H, a

t, an) = Dapp
post(Y

B
(n), H, a

t, an)

as n→∞ if and only if

HA = HB and atA + anA = atB + anB .

Proof. From Equation 3.4 it follows that

Dapp
post(Y

A
(n), H, a

t, an) = Dapp
post(Y

B
(n), H, a

t, an)

if and only if

(
at + an

n2H
)n/2

1
h(H)

(j(H)
2

)n+1

exp(− n2H

2(at + an)
(c1(H)TAn + 2c2(H)UAn )) =

(
at + an

n2H
)n/2

1
h(H)

(j(H)
2

)n+1

exp(− n2H

2(at + an)
(c1(H))TBn + 2c2(H)UBn )),

where c1(H) and c2(H) are the elements of the approximate inverse covariance matrix
as defined in (2.28) and (2.29).

This is equivalent to

exp
(
− n2H

2(at + an)
(c1(H)TAn +2c2(H)UAn )

)
= exp

(
− n2H

2(at + an)
(c1(H)TBn +2c2(H)UBn )

)
,

so it is enough to prove that

c1(H)(TAn − TBn ) = 2c2(H)(UBn − UAn ). (3.6)
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Applying Corollary 2.34 to the sequences TAn , U
A
n , T

B
n and UBn as in section 2.3, it

follows for k = A,B in the limit n→∞

T kn
n
∼ atk + ank

n2Hk

and
Ukn
n− 1

∼ atk + ank
n2Hk

(22Hk−1 − 1).

Equation (3.6) implies

nc1(H)(
atA + anA
n2HA

− atB + anB
n2HB

)

∼2(n− 1)c2(H)
(atB + anB
n2HB

(22HB−1 − 1)− atA + anA
n2HA

(22HA−1 − 1)
)
.

This is equivalent to

atA + anA
n2HA

(
nc1(H) + 2(n− 1)c2(H)(22HA−1 − 1)

)
∼ atB + anB

n2HB

(
nc1(H) + 2(n− 1)c2(H)(22HB−1 − 1)

)
.

This equation is obviously satisfied if and only if HA = HB . On the other hand, this
condition implies that

atA + anA = atB + anB .

�

This proves that we are not able to recover the values of the amplitude parameters of
the two FBM realizations from their sum when the Hurst parameters are equal. In
this case, there is no unique solution.

3.2 Uniqueness of the amplitude solution

In this section, we study the posterior distributions of the sum of two FBM realizations
with unequal Hurst parameters. The goal is to prove the existence and uniqueness of
the solutions in the case the Hurst parameters are known in retrieving the amplitude
parameters at and an.

Even if the computer simulations in some cases support the statement that the solution
is uniquely determined for both at and an, we have only succeeded to prove part of this
result analytically. In the following theorem, we prove that the amplitude parameter
of the realization with the smaller Hurst parameter can be retrieved uniquely.

In this section, we suppose that the Hurst parameters are known. For simplicity let
Ht

1 = Ht
2 = Ht and Hn

1 = Hn
2 = Hn. Since by Theorem 3.5 the condition Ht 6= Hn

is necessary for the uniqueness of the solution, we only consider the case Hn < Ht.
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Consider two stochastic processes XA
(n) = (XA(t1), ..., XA(tn)), and XB

(n) = (XB(t1), ...,
XB(tn)) as defined in Equation (3.1). Since the Hurst parameters are known, Equa-
tion (3.1) can be rewritten as

XA(ti) =
√
atAZHt(ti, ω1) +

√
anAZHn(ti, ω2)

XB(ti) =
√
atBZHt(ti, θ1) +

√
anBZHn(ti, θ2),

(3.7)

where ωi, θi ∈ Ω for i = 1, 2. Note that even if the FBM realizations have the same
Hurst parameters, they can be two different realizations of the same process.

In order to simplify the explicit calculation we define the associated fGn. Define
YA

(n) = (Y A(t1), ..., Y A(tn)), and YB
(n) = (Y B(t1), ..., Y B(tn)) as follows

Y A(ti) = XA(ti)−XA(ti−1)

Y B(ti) = XB(ti)−XB(ti−1).
(3.8)

The covariance matrices (Λk)(n) with k = A,B are then

(Λk)(n) =
atk
n2Ht (ΓHt)(n) +

ank
n2Hn (ΓHn)(n)

where (ΓH)(n) is the covariance matrix defined in Equation (2.6).

Once more, since we need the inverse covariance matrix explicitly, we consider the
approximate problem as in section 2.2. Using the notation in section 2.3, the posterior
distribution for the processes Yk

(n) given at = atk and an = ank with k = A,B is

Dapp
post(Y

k
(n), a

t
k, a

n
k ) =

β

(2π)n/2
∣∣(Λk)(n),app

∣∣− 1
2 exp(−1

2
(Yk

(n))
T (Λk)−1

(n),appY
k
(n)).

(3.9)

In this case, we cannot take the underlying parameters out of the approximate co-
variance matrix to calculate the inverse. We use the again the method presented
in section 2.2 to calculate the elements c1(at, an) and c2(at, an) of the full inverse
covariance matrix.

Using the notation in section 2.2, for the processes Yk
(n) k = A,B we have:

[(Λk)(n)]3×3 =
atk
n2Ht [(ΓHt)(n)]3×3 +

ank
n2Hn [(ΓHn)(n)]3×3

=
atk
n2Ht

 1 l(Ht) b(Ht)
l(Ht) 1 l(Ht)
b(Ht) l(Ht) 1

+
ank
n2Hn

 1 l(Hn) b(Hn)
l(Hn) 1 l(Hn)
b(Hn) l(Hn) 1


=

f(atk, a
n
k ) F (atk, a

n
k ) g(atk, a

n
k )

F (atk, a
n
k ) f(atk, a

n
k ) F (atk, a

n
k )

g(atk, a
n
k ) F (atk, a

n
k ) f(atk, a

n
k )


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where

f(atk, a
n
k ) =

atk
n2Ht +

ank
n2Hn

F (atk, a
n
k ) =

atk
n2Ht l(H

t) +
ank
n2Hn l(H

n)

g(atk, a
n
k ) =

atk
n2Ht b(H

t) +
ank
n2Hn b(H

n),

where b(H) and l(H) are defined as in (2.25) and (2.24) .

The determinant of the matrices [(Λk)(n)]3×3 for k = A,B will be∣∣[(Λk)(n)]3×3

∣∣ =f(atk, a
n
k )
[
f(atk, a

n
k )2 − g(atk, a

n
k )2b(Hn)

]
−2F (atk, a

n
k )2b(Hn)

[
f(atk, a

n
k )− g(atk, a

n
k )b(Hn)

]
.

For 1
2 < Ht, Hn <1 we can invert the covariance matrix. The elements of the approx-

imate inverse covariance matrix will be

c1(atk, a
n
k ) =

f(atk, a
n
k ) + g(atk, a

n
k )

f(atk, a
n
k )[f(atk, a

n
k ) + g(atk, a

n
k )] + 2F (atk, a

n
k )

and

c2(atk, a
n
k ) = − F (atk, a

n
k )

f(atk, a
n
k )[f(atk, a

n
k ) + g(atk, a

n
k )] + 2F (atk, a

n
k )
.

Note that the elements c1 and c2 depend on the amplitude parameters at and an.

Using the notation in section 2.3 for the stochastic processes Yk
(n)with k = A,B, it

follows that
Yk

(n)(Λ
k)−1

(n)(Y
k
(n))

T = c1(atk, a
n
k )T kn + 2c2(atk, a

n
k )Ukn .

Applying Corollary 2.34 to the sequences T kn and Ukn in the limit n→∞, we get

T kn
n
∼ f(atk, a

n
k )

and
Ukn
n− 1

∼ F (atk, a
n
k ).

Hence the posterior distribution can be estimated in the limit n→∞ as

lim
n→∞

Dapp
post(Y

k
(n), a

t, an) =

lim
n→∞

β(2π)−
n
2
∣∣(Λk)(n),app

∣∣− 1
2 exp(−n

2
(c1(atk, a

n
k )f(atk, a

n
k ) + 2c2(atk, a

n
k )F (atk, a

n
k ))).

(3.10)

The problem of estimating the amplitude parameters at and an of the sum of two
FBM with different Hurst parameters, leads to the following theorem:
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Theorem 3.11. Consider the stochastic processes YA
(n) and YB

(n) defined in (3.8)
with 1

2 < Ht, Hn < 1. Then

Dapp
post(Y

A
(n), a

t, an) = Dapp
post(Y

B
(n), a

t, an)

as n→∞ implies
anA = anB .

Proof. Starting from (3.10) we can easily verify that in the limit n→∞

Dapp
post(Y

A
(n), a

t, an) = Dapp
post(Y

B
(n), a

t, an)

if and only if

lim
n→∞

β

(2π)n/2
∣∣(Λk)(n),app

∣∣− 1
2 exp

(
− n

2
(c1(at, an)f(atA, a

n
A) + 2c2(at, an)F (atA, a

n
A))
)

=

lim
n→∞

β

(2π)n/2
∣∣(Λk)(n),app

∣∣− 1
2 exp

(
− n

2
(c1(at, an)f(atB , a

n
B + 2c2(at, an)F (atB , a

n
B))
)
.

We recall that the sums T kn and Ukn with k = A,B do not depend on the unknown pa-
rameters at and an. Therefore, the posterior distributions of the unknown amplitude
parameters, i.e. the elements c1 and c2, depend on at and an. This is equivalent to

limn→∞ c1(at, an)
[
f(atA, a

n
A)− f(atB , a

n
B)
]

=

limn→∞ 2c2(at, an)
[
F (atB , a

n
B)− F (atA, a

n
B)
]
,

which can be rewritten as

lim
n→∞

[
f(at, an) + g(at, an))

][
f(atA, a

n
A)− f(atB , a

n
B)
]

=

lim
n→∞

−2F (at, an)
[
F (atB , a

n
B)− F (atA, a

n
A)
]
.

(3.12)

Since we have supposed that Ht > Hn, the dominating terms in the limit n→∞ will
be those of order 1/n4Hn

. Hence, if we consider only the dominating terms, Equation
(3.12) can be written as

lim
n→∞

1
n4Hn (ananA + b(Hn)ananA − ananB − b(Hn)ananB) =

lim
n→∞

−2
n4Hn (l(Hn)2ananB − l(Hn)2ananB)

where
b(Hn) =

1
2

(32Hn

− 22Hn

+ 1)

and
l(Hn) = (22Hn−1 − 1).
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This is true if and only if

an(anA − anB)(1 + b(Hn)) = 2l(Hn)2an(anB − anA).

Thereore, we must have

(anA − anB)
(
1 + b(Hn) + 2l(Hn)2

)
= 0.

Since 1 + b(Hn) + 2l(Hn)2) > 0 for all 1
2 < Hn < 1 the condition is satisfied if and

only if anA = anB . This proves the theorem. �

We considered the problem of retrieving the amplitude parameters from the vector of
the sum of two FBMs with Ht > Hn. Our initial goal was to prove the uniqueness
of the solution with respect to both amplitude parameters, at and an. Unfortunately,
the asymptotic behavior only gives the uniqueness to the amplitude parameter of the
realization with the smaller Hurst parameter, i.e. the one representing the noise.

However, the simulations, lead us to believe that also in the general case, both at and
an can be determined by discrete measurements. This remains an open problem.

3.3 The uniqueness of the H solution

The aim of this section is to prove an analogue to Theorem 3.11 for the Hurst param-
eters. In particular, we will consider the sum of two FBM realizations with different
Hurst parameters Ht and Hn and assume the amplitude parameters are known and
by definition, always positive. For simplicity, we assume

atA = atB = anA = anB = 1.

This will simplify the calculations. Moreover, we assume that Ht > Hn as in Theorem
3.11.

Consider two stochastic processes XA
(n) = (XA(t1), ..., XA(tn)), and XB

(n) = (XB(t1), ...,
XB(tn)) such that

XA(ti) = ZHt
A

(ti) + ZHn
A

(ti)

XB(ti) = ZHt
B

(ti) + ZHn
B

(ti)
(3.13)

and define YA
(n) = (Y A(t1), ..., Y A(tn)), and YB

(n) = (Y B(t1), ..., Y B(tn)) as follows

Y A(ti) = XA(ti)−XA(ti−1)

Y B(ti) = XB(ti)−XB(ti−1).
(3.14)

Then the covariance matrices (Λk)(n) for k = A,B of these two processes will be

(Λk)(n) =
1

n2Ht
k

(ΓHt
k
)(n) +

1
n2Hn

k
(ΓHn

k
)(n)
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where (ΓH)(n)) is the covariance matrix defined in Equation (2.6).

In order to write the posterior distribution explicitly we proceed as in section 2.2. The
posterior distribution of the processes Yk

(n) for k = A,B will be like Equation (3.9)
with 1

2 < Ht
k, H

n
k <1.

The 3× 3 upper corner of the covariance matrix of the process Yk
(n) for atk = ank = 1

is

[(Λk)(n)]3×3 =
1

n2Ht
k

[(ΓHt
k
)(n)]3×3 +

1
n2Hn

k
[(ΓHn

k
)(n)]3×3

=

f(Ht
k, H

n
k ) F (Ht

k, H
n
k ) g(Ht

k, H
n
k )

F (Ht
k, H

n
k ) f(Ht

k, H
n
k ) F (Ht

k, H
n
k )

g(Ht
k, H

n
k ) F (Ht

k, H
n
k ) f(Ht

k, H
n
k )


where

f(Ht
k, H

n
k ) =

1
n2Ht

k

+
1

n2Hn
k

F (Ht
k, H

n
k ) =

l(Ht
k)

n2Ht
k

+
l(Hn

k )
n2Hn

k

g(Ht
k, H

n
k ) =

b(Ht
k)

n2Ht
k

+
b(Hn

k )
n2Hn

k
,

with b(H) and l(H) defined as in (2.25) and (2.24). Then the elements of the approx-
imate inverse covariance matrix will be

c1(Ht
k, H

n
k ) =

f(Ht
k, H

n
k ) + g(Ht

k, H
n
k )

f(Ht
k, H

n
k )[f(Ht

k, H
n
k ) + g(Ht

k, H
n
k )] + 2F (Ht

k, H
n
k )

and

c2(Ht
k, H

n
k ) = − F (Ht

k, H
n
k )

f(Ht
k, H

n
k )[f(Ht

k, H
n
k ) + g(Ht

k, H
n
k )] + 2F (Ht

k, H
n
k )
.

Since we are interested in the uniqueness of the solution of the Hurst parameters, we
remark that also the elements c1 and c2 depend on the parameters Ht and Hn.

Using the same notation in section 2.3 for the stochastic processes Yk
(n)with k = A,B,

it follows
Yk

(n)(Λ
k)−1

(n)(Y
k
(n))

T = c1(Ht
k, H

n
k )T kn + 2c2(Ht

k, H
n
k )Ukn .

Applying Corollary 2.34 to the sequences T kn and Ukn in the limit n→∞, we get

T kn
n
∼ f(Ht

k, H
n
k )

and
Ukn
n− 1

∼ F (Ht
k, H

n
k ).
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Hence, the posterior distribution for the process Yk
(n) given Ht = Ht

k and Hn = Hn
k

equals

Dapp
post(Y

k
(n), H

t, Hn) = β(2π)−
n
2
∣∣(Λk)(n),app)

∣∣− 1
2

· exp
(
− n

2
(c1(Ht

k, H
n
k )f(Ht

k, H
n
k ) + 2c2(Ht

k, H
n
k )F (Ht

k, H
n
k ))
)
.

(3.15)

The problem of estimating the Hurst parameters Ht and Hn of the sum of two FBMs
with amplitude parameters known leads the following theorem:

Theorem 3.16. Consider the stochastic processes YA
(n) and YB

(n) defined in (3.14)
with 1

2 < Ht
k, H

n
k <1, where k = A,B. Then

Dapp
post(Y

A
(n), H

t, Hn) = Dapp
post(Y

B
(n), H

t, Hn)

for n→∞ implies
Hn
A = Hn

B .

Proof. Starting from (3.15), we can easily verify that in the limit n→∞

Dapp
post(Y

A
(n), H

t, Hn) = Dapp
post(Y

B
(n), H

t, Hn)

if and only if

lim
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(3.17)

We can here use the same argument as in the proof of Theorem 3.11. Since we suppose
that Ht

A > Hn
A and Ht

B > Hn
B , the dominating terms in the limit as n → ∞, will be

of the order 1/n2(Hn
A+Hn

B). Hence, considering only the terms of this order, Equation
(3.17) can be written as

lim
n→∞

1
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)
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(
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)

if and only if
l(Hn

A) = l(Hn
A).

This is satisfied if and only if Hn
A = Hn

B . �
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Our goal was to prove the uniqueness of the solution with respect to both Hurst
parameters. We have only succeeded in proving the uniqueness with respect to the
smaller of the Hurst parameters, Hn.

On the other hand, computer simulations were successful in some cases in retrieving
both parameters quite accurately. We think that when studying the asymptotic be-
havior of the posterior distribution analytically, we lose some information present in
the simulations.

Of course, the loss of information may be due to the fact that we consider the ap-
proximate inverse covariance matrix. It is possible that taking a band matrix with a
larger band could lead to better results, but the calculations would get much more
complicated.

This remains an open problem.





Chapter 4

Numerical simulations

Numerical simulations play a central role in this work. In fact, this work started
with computer simulations. The theory, as presented in previous chapters, has been
developed on the basis of the numerical results. In this chapter, we compare the
analytical results with the obtained simulation results. As pointed out in previous
chapters, the numerical simulations show more features than those we have succeeded
in proving analytically. The simulations were done in MATLAB.

The first step in the simulations is to generate FBM realizations, given the Hurst
parameter and the number of measurements. All realizations are performed for t ∈
[0, 1].

In the next paragraphs, we show how the posterior distributions behave in the follow-
ing cases:

1. Retrieving the amplitude parameter from a realization on FBM
2. Retrieving the Hurst parameter from a realization of FBM
3. Retrieving the underlying parameters from a measurement vector which is the

sum of two realizations of FBM.

4.1 Retrieving the amplitude parameter from a realization of
a FBM

To study the behavior of the posterior distribution when retrieving the amplitude
parameter from a realization of FBM, we first generate a FBM realization ZH with a
given Hurst parameter H. Then we choose a value for the amplitude parameter â and
calculate the measurement vector X as in Equation (2.2) and calculate the posterior
distribution Dpost(â,X) as shown in Equation (2.3).

The resulting posterior distribution is shown in Figure 1.2.
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The use of different values for the Hurst parameter has no effect on the behavior
of the posterior distribution. We have not found any relation between the Hurst
parameter and the amplitude parameter that could influence the behavior of the
posterior distribution of the amplitude.

On the other hand, the number of observations n in the measurement vector quite
strongly affects the posterior distribution Dpost(â,X).

To study what happens when the number of observations increases, we generated a
realization of FBM with 2000 points (t0 = 0, ..., t2000 = 1). From this realization, we
created measurement vectors of different lengths by picking up observations at times
tnh with h fixed and n = 0, ..., 2000/h.

We calculated the resulting posterior distributions using the same realization, but
doubling each time the number of observations.

Table 4.1 shows the numerical results obtained for the amplitude parameter in a FBM
realization when the Hurst parameter equals 0.7, the amplitude â equals 50 and ā is
the amplitude estimate.

Table 4.1: Posterior distribution maxima as a function of n with a ∈ (1, 800).

n max(Dpost(â,X)) ā

26 0.10 33
51 0.08 47

101 0.13 43
201 0.15 51
401 0.25 49

It is easy to see that the posterior distribution becomes more peaked and the estimate
of the amplitude parameter more reliable as the number of observations increases. A
graphical representation of this behavior is shown in Figure 1.3.

4.2 Retrieving the Hurst parameter from a realization of
FBM

To study the behavior of the posterior distribution when retrieving the Hurst pa-
rameter, we proceeded as with the amplitude parameter. We first generated a FBM
realization ZĤ with a given Hurst parameter Ĥ. Then we chose the amplitude pa-
rameter a to make the measurement vector Z =

√
aZĤ and calculated the posterior

distribution Dpost(Ĥ,Z) as shown in Equation (2.40).

As in the case of the amplitude parameter, we could not find any relation between the
values of the Hurst parameter H and the amplitude parameter a that could influence
the behavior of the posterior distribution Dpost(Ĥ,Z).
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On the other hand, the number of observations has a significant effect on the behavior
of the posterior distribution with respect to Ĥ.

In the simulations, we used the same measurements as with the amplitude parameter.
This means that both the original vector (i.e. the one containing 2001 observations)
and the shorter vectors are the same as used in the previous section.

Table 4.2: Posterior distribution maxima as a function of n with H ∈ (0, 1).

n max(Dpost(Ĥ,X)) H̄

26 12.50 0.76
51 19.10 0.70
101 30.65 0.71
201 47.28 0.70
401 10156 0.70

Table 4.2 shows the numerical results obtained for the Hurst parameter in a FBM
realization when the amplitude equals 50, the Hurst parameter 0.7 and H̄ is its esti-
mate.

It is easy to see that the estimate becomes more precise and the posteriors distribution
more peaked as the number of observations increases. A graphical representation of
this behavior is given in Figure 2.2.

An interesting feature can be noted comparing Tables 4.1 and 4.2. First of all, we
cannot say, just on the basis of the simulation results, that the posterior distribution
for â tends to Dirac’s delta distribution. We can only say that the estimate of the
amplitude parameter becomes narrower when the number of observation increases.

On the other hand, the posterior distribution of Ĥ is more peaked and gets higher
at a faster rate than the amplitude distribution. In particular, it seems that after a
certain point, the posterior distribution really is like Dirac’s delta.

Our goal has been to prove that the posterior distribution concentrates on the exact
value of the estimated parameter. We have not analyzed the rate of convergence of
the posterior distribution. However, it will be useful to keep in mind this behavior
difference between the two posterior distributions in order to better understand the
numerical results obtained from the simulations of the sum of two FBMs.

4.3 Retrieving the parameters from the sum of two FBM
realizations

To retrieve the underlying parameters from a measurement vector which is the sum
of two FBMs, we have to build the simulation through the following steps:
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1. Generate two FBM realizations, Xt and Xn with given underlying parameters
at, Ht, an, Hn.

2. Make Z = Xt +Xn the measurement vector.
3. Calculate the posterior distribution according to

Dpost(Ht, Hn, at, an,Z) = (2π)−n/2 |Σn + Σt|−1/2 exp(−1
2
ZT (Σn + Σt)−1Z),

where Σn and Σt are the covariance matrices of the stochastic processes Xn and
Xt, respectively.

4. Calculate the marginal distributions of each of the unknown parameters and
plot them.

The idea in taking the sum of two FBMs is that we also consider the error to be a
FBM realization. Usually, in this kind of simulations, once the realization is given,
the error is added in order to model the measurement vector. In practice, this is
usually done by generating a vector of random variables with Gaussian distributions
and adding it to the realization vector (see e.g. [5]).

Since we suppose here that also the error is a FBM realization in the vector Z, both the
trend and the error are modelled. The noise vector is characterized by an amplitude
smaller than that of the trend, and a smaller Hurst parameter.

As a result of each simulation, we obtain four different posterior (marginal) distribu-
tions: Dpost(Ht, at,Z), Dpost(Hn, an,Z), Dpost(Ht, Hn,Z) and Dpost(at, an,Z).

The first observation from the simulations is that Dpost(Ht, at,Z) = Dpost(Hn, an,Z)
and, in particular, that we get an estimator of the smallest Hurst parameter, Ht or
Hn. This result is fully supported by the analytical results, where we stated that in
the case of the sum of two FBMs, only the smaller Hurst parameter can be uniquely
estimated.

To study the behavior of the posterior distributions from a sum of two FBMs, we
simulated the measurement vector with different values of the underlying parameters.
We show the most relevant simulation results in a few figures.

First, the case where Hn = Ht = 0.3, an = 100 and at = 500.

As seen in Figure 4.1, the posterior distribution Dpost(Hn, an,Z) attains its maximum
for Hn = 0.28 and an between 500 and 600. Dpost(Hn, an,Z) attains a local maximum
for Hn = 0.22 and an around 350. It is obvious that Dpost(Hn, an,Z) is quite peaked
with respect to Hn, but not with respect to an.

Furthermore, the posterior distribution Dpost(at, an,Z) is quite flat and gives for all
values of the amplitude parameters an and at a probability different from zero. The
posterior distribution Dpost(at, an,Z) is symmetric, since it is not possible to choose
between the values of an and at. The posterior distribution Dpost(at, an,Z) attains its
maximum for (at, an) = (600, 1). In particular, all the values on the line at+an = 600
have a high probability.
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Figure 4.1: Posterior distributions for the sum of two FBMs with Ht = Hn = 0.3, at =
500, an = 100.

This numerical result supports the analytical result shown in section 3.1. We can
conclude that, in the case of a measurement vector which is the sum of two FBMs
with equal Hurst parameters, the amplitude parameter estimates obtained by the
statistical inversion method are not reliable.

The next case is Hn = 0.1, Ht = 0.9 and at = an = 200 to check how having the
same value of the amplitude parameter affects the posterior (marginal) distributions.

Figure 4.2 shows both Dpost(Ht, Hn,Z) and Dpost(at, an,Z). As with the amplitude
parameters, Dpost(Ht, Hn,Z) is always symmetric. In particular, Dpost(Ht, Hn,Z)
attains its maximum for (Ht, Hn) = (0.98, 0.13).

However, Dpost(at, an,Z) attains its maximum for (at, an) = (165, 165).

Figure 4.2: Posterior distributions for the sum of two FBMs with Ht = 0.9, Hn =
0.1, at = 200, an = 200.
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We deduce that the underlying parameter estimates of the sum of two FBMs with the
same amplitude are quite reliable.

All the analytic results on retrieving the Hurst parameters are restricted to the case
of Ht and Hn > 1

2 for technical reasons.

The numerical results for the sum of FBMs with Ht = 0.3, Hn = 0.1, at = 500
and an = 100 are shown in Figure 4.3. It is possible to see that Dpost(Ht, Hn,Z)
attains its maximum for (Ht, Hn) = (0.28, 0.22), but this maximum is not as as
sharp as in the previous simulation. This indicates uncertainty on the value of the
estimate. Moreover, there is also a local maximum for (Ht, Hn) = (0.92, 0.20) where
the posterior distribution attains a value only slightly smaller than for (Ht, Hn) =
(0.28, 0.22).

On the other hand, Dpost(at, an,Z) attains its maximum for (at, an) = (600, 1). How-
ever, the posterior distribution is quite flat and small in value. This means that the
information obtained from Dpost(at, an,Z) about the most probable value of (at, an)
is quite poor.
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Figure 4.3: Posterior distributions for the sum of two FBMs with Ht = 0.3, Hn =
0.1, at = 500, an = 100.

It is obvious that the parameter estimates are not reliable in the case of a measurement
vector which is the sum of two FBMs with both Hurst parameters less than 1

2 .

If both Hurst parameters are greater than 1
2 , we have the same result. Figure 4.4

shows that Dpost(Ht, Hn,Z) attains its maximum for (Ht, Hn) = (0.82, 0.75), giving
a hint that both Hurt parameters are indeed greater than 1

2 . The posterior distribution
Dpost(Ht, Hn,Z) is much sharper than in the previous case and attains values different
from zero in smaller area than in Figure 4.3.

The posterior distribution Dpost(at, an,Z) attains its maximum for (at, an) = (800, 1).
Also in this case, the posterior distribution is quite flat and small in value. More-
over, there is an area of (Ht, Hn) greater than 700 where the probability distribution
Dpost(at, an,Z) attains quite a high value. This indicates again that there is uncer-
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tainty on the value of the amplitude parameter estimates.
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Figure 4.4: Posterior distributions for the sum of two FBMs with Ht = 0.6, Hn =
0.8, at = 500, an = 100.

Concluding, we observe that the estimates for the underlying parameters are not
reliable in the case of the sum of two FBMs with both Hurst parameters greater than
1
2 .

This suggests that the FBM realizations from which we generate the measurement
vector as their sum should be different enough so that they can be better recognized
in the posterior distribution.

For this reason, we show the numerical results obtained in the case of the sum of two
FBMs with Ht = 0.9 and Hn = 0.1. Figure 4.5 shows the posterior distributions for
the case where at and an are the same as in the two previous simulations, i.e. at = 500
and an = 100.

Dpost(Ht, Hn,Z) attains its maximum for (Ht, Hn) = (0.93, 0.15). This is the first
time in our simulations that the estimates are close to the correct values of the
Hurst parameters. Although the posterior distribution is not as peaked as in Fig-
ure 4.4, the maximum value is greater. Comparing the two posterior distributions
Dpost(Ht, Hn,Z) shown in Figures 4.4 and 4.5, also the area where they attain their
maxima is smaller in latter case, indicating that there is a smaller degree of uncertainty
in Figure 4.5.

On the other hand, the posterior distribution Dpost(at, an,Z) attains its maximum
for (at, an) = (115, 100). In this case, the posterior distribution is not so small as in
the previous two cases. However, the amplitude parameter estimates are not at all
what we would expect.

From these numerical results we can deduce that the Hurst parameters obtained in
the case of the sum of two FBMs with Ht = 0.9, Hn = 0.1, at = 500 and an = 100,
are reliable. However, the amplitude parameter estimates are not reliable.
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Figure 4.5: Posterior distributions for the sum of two FBMs with Ht = 0.9, Hn =
0.1, at = 500, an = 100.

Next, we study how different values of the amplitude parameters affect the posterior
distribution.

We have simulated two measurement vectors which are the sums of two FBMs where
Ht = 0.9 and Hn = 0.1 as in the previous simulation, but the ratio between the
amplitude parameters changes. Figure 4.6 shows the posterior (marginal) distributions
with at = 500 and an equal to 10 and 1, respectively.

The shape of Dpost(Ht, Hn,Z) does not differ so much in the two cases. However,
the estimates for the Hurt parameters become more precise in the second case with
(0.98, 0.22) versus the first one (0.87, 0.12).

It seems that the results obtained with an = 10 are worse than those obtained with
an = 100. It is not so, if we also compare the posterior distributions Dpost(at, an,Z).

We see that the posterior distributions Dpost(at, an,Z) peak more quickly and give
better and better estimates both for at and an, also in comparison with Figure 4.5.

Previously, there was only one FBM realization, whereas here, for each calculation, two
new FBMs are generated with different parameters. This implies that the estimates
cannot always be satisfactory.

On the other hand, by studying the shapes of the posterior distributions and compar-
ing all three posterior distributions, we can get much more information than only by
taking the maximum values of the posterior distributions.

From the numerical results we deduce that the estimates for the underlying parameters
become more reliable as the ratio at/an increases.

All simulations in the estimation of the underlying parameters of the sum of two FBM
realizations were performed with measurement vectors containing a constant number,
500, of observations, so that the results obtained are consistent.



4.4. RECONSTRUCTION 59

posterior with respect to H1 and H2

H1

H
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

posterior with respect to a1 and a2

a1

a
2

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

posterior with respect to H1 and H2

H1

H
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

posterior with respect to a1 and a2

a1

a
2

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

Figure 4.6: Posterior distributions for the sum of two FBMs with Ht = 0.9, Hn =
0.1, an = 500 and at equal to 10 and 1, respectively.

It is clear that with a larger number of observations we could obtain better estimates
for the underlying parameters.

4.4 Reconstruction

Once the underlying parameters have been estimated, we try to reconstruct the com-
ponents of the measurement vector. The goal is to obtain the trend vector as accu-
rately as possible.

This is done in the following way:

1. Given the estimated parameters Hn and an generate a realization of FBM.
2. Calculate Xt = Z −Xn.

Figure 4.7 shows the reconstructions of the trend and noise vectors from the sum of
two FBMs with Ht = 0.9 and Hn = 0.1 and with at = 500 and an = 1.
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Figure 4.7: Reconstruction of the trend and noise vectors given the sum of two FBMs
with Ht = 0.9 and Hn = 0.1 with at = 500 and an = 1.

As shown in the previous section, the statistical inversion method gives quite accurate
results in estimating the underlying parameters in cases such this one. From Figure
4.7, we can observe that also the reconstruction is quite successful.
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Figure 4.8: Reconstruction of the trend and noise given the sum of two FBMs with
Ht = 0.6 and Hn = 0.3 with at = 500 and an = 1.

Figures 4.8 show the reconstructions of the trend and noise vectors when the mea-
surements vector is the sum of two FBMs with Ht = 0.6 and Hn = 0.3 and with
at = 500 and an = 1.

We can see that when Hurst parameters are not very different, the reconstruction is
quite strongly affected. This is obviously a direct consequence of the fact that the
statistical inversion method does not give a good estimator of the Hurst parameters.
Figure 4.8 shows that in this case, the reconstruction is no more reliable.

In the last example, the Hurst parameters are the same as in Figure 4.7 and the
amplitude parameters are closer to each other. Figures 4.9 shows the reconstructions
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Figure 4.9: Reconstruction of the trend and noise vectors given the sum of two FBMs
with Ht = 0.9 and Hn = 0.1 and with at = 50 and an = 1.

of the trend and noise vectors of the sum of two FBMs with Ht = 0.9 and Hn = 0.1
with at = 50 and an = 1.

Also in this case, one can see that when the amplitude parameters are not that much
different from each other, the reconstruction is affected. The effect is not as strong as
in Figure 4.8, because the estimate of the Hurst parameter Hn is equal to the correct
value. Even in this case, the trend reconstruction is not reliable.





Chapter 5

Conclusions

Here we summarize the simulation results.

The first result on one FBM realization is that, both when retrieving the amplitude
parameter or the Hurst parameter, the estimates become more reliable with increasing
the number of observations. The rate of convergence of the estimates to the correct
values of the underlying parameters is faster for the Hurst parameter than for the
amplitude parameter.

For the sum of two FBMs, there are many results. Table 5.1 shows a summary of
how different changes in the measurement vector affect the posterior distributions
Dpost(Ht, Hn,Z) and Dpost(at, an,Z). The last two columns are self-explanatory.

Table 5.1: Posterior distribution maxima as a function of n for some combinations of
Ht, Hn and at, an.

Measurement vector Dpost(Ht, Hn,Z) Dpost(at, an,Z)
Ht = Hn d —
at = an — —
Ht, Hn < 1

2 d d
Ht, Hn > 1

2 d d
Ht = 0.9 Hn = 0.1 at = 500 an = 100 d U
Ht = 0.9 Hn = 0.1 at = 500 an = 10 U U
Ht = 0.9 Hn = 0.1 at = 500 an = 1 U U
Increasing the number of observations U U

It can be concluded that the best results are obtained for Ht near one, Hn nearer
zero, at large with respect to an and an near one.

These conditions seem restrictive, but in reality, they are not. If we consider one FBM
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realization to represent the trend and the other one to represent the noise, the trend is
usually quite smooth, so it is tempting to conjecture that the FBM which represents
the trend would a Hurst parameter near one.

On the other hand, in physics, in many cases the noise is about a few per cent, so it is
consistent to think that the amplitude parameter of the noise FBM should be much
smaller than that of the trend.

We are able to model physical measurements using a single stochastic process and
simplify the calculation procedure.
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