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Abstract

We are interested in studying Gaussian Markov random fields as correlation priors for
Bayesian inversion. We construct the correlation priors to be discretisation-invariant,
which means, loosely speaking, that the discrete priors converge to continuous priors
at the discretisation limit. We construct the priors with stochastic partial differential
equations, which guarantees computational efficiency via sparse matrix approxima-
tions. The stationary correlation priors have a clear statistical interpretation through
the autocorrelation function.

We also consider how to make structural model of an unknown object with anisotropic
and inhomogeneous Gaussian Markov random fields. Finally we consider these fields
on unstructured meshes, which are needed on complex domains.

The publications in this thesis contain fundamental mathematical and computational
results of correlation priors. We have considered one application in this thesis, the
electrical impedance tomography. These fundamental results and application provide
a platform for engineers and researchers to use correlation priors in other inverse
problem applications.

Keywords: Bayesian statistical inverse problems, Gaussian Markov random fields,
convergence, discretisation, stochastic partial differential equations
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Original publications

This thesis consists of an introductory part and the following original papers:

I L. Roininen, M. Lehtinen, S. Lasanen, M. Orispää and M. Markkanen, Correla-
tion priors, Inverse Problems and Imaging, 5 (2011), 167–184.

II L. Roininen, P. Piiroinen and M. Lehtinen, Constructing continuous stationary
covariances as limits of the second-order stochastic difference equations, Inverse
Problems and Imaging, 7 (2013), 611–647.

III L. Roininen, J. M. Huttunen and S. Lasanen, Whittle-Matérn priors for
Bayesian statistical inversion with applications in electrical impedance tomog-
raphy, Inverse Problems and Imaging, 8 (2014), 561–586.

IV L. Roininen, S. Lasanen, M. Orispää and S. Särkkä, Sparse approximations of
fractional Matérn fields, Scandinavian Journal of Statistics, submitted March
2015.

In the text, the original papers will be referred to by their Roman numerals.

The contributions of the author to the original publications are as follows:

Paper I: Correlation priors

This is the fundamental paper of this thesis and provides all the notations of one-
dimensional correlation priors. The construction is based on stochastic difference
equations and on the discussion of how the discrete autocovariance function converges
to the continuous autocovariance function at the discretisation limit. The author
presented the fundamental idea of the paper and has written significant parts of the
paper. All numerical simulations were carried out by the author.

Paper II: Constructing continuous stationary covariances as limits
of the second-order stochastic difference equations

The strongest convergence results of the correlation priors are presented in this pa-
per. We discuss a number of items: Discretisation schemes of stochastic processes, the
strong-weak convergence of probability measures, discretisation-invariance in Bayesian
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2 INTRODUCTION

inversion and computation of a number of autocovariance functions of the correlation
priors. The starting point for this paper are the stochastic partial differential equa-
tions, in contrast to stochastic difference equations in Paper I. The author was behind
the original idea of the paper. Dr Petteri Piiroinen developed the convergence theo-
rems and discussion on discretisation-invariance. The author contributed especially
to the formulation of continuous and discrete real and complex models and to the
calculation of autocovariance functions.

Paper III: Whittle-Matérn priors for Bayesian statistical inversion
with applications in electrical impedance tomography

We showed how to apply correlation prior formalism to electrical impedance tomog-
raphy. Here we use finite element discretisation schemes instead of lattice approxi-
mations. The author was behind the original idea of implementing the correlation
priors on finite element meshes and has written significant parts of the text. Dr Janne
Huttunen is responsible for all the finite element simulations.

Paper IV: Sparse approximations of fractional Matérn fields

In this paper, we considered how to efficiently approximate Matérn fields with frac-
tional spectrum. The study is based on Taylor approximations and studying band-
limited spectrum. For the discretisation, we use the same methods as in Paper I.
Convergence results are done by Dr Sari Lasanen. The author formulated the original
idea of the paper and has written significant parts of the paper.



Chapter 1

Introduction

Inverse problems are the mathematical theory and practical interpretation of noise-
perturbed indirect observations. The specific field of Bayesian statistical inverse prob-
lems is the effort to formulate real-world inverse problems as Bayesian statistical es-
timation problems [3, 11, 33]. Applications include for example atmospheric remote
sensing, near-space studies, medical imaging and ground prospecting.

In Bayesian inversion, a priori probability distribution is, in practice, the only tuneable
parameter in the estimation algorithm. Prior distribution is subjective information of
the unknown before any actual measurements are done. The better prior information
we have, the better estimates we will get.

In this thesis, we consider sparse matrix approximations of continuous Gaussian
Markov random field priors, the correlation priors. These priors have three bene-
fits:

1. They have a clear statistical interpretation as stationary Gaussian random fields.

2. The priors can be represented as systems of stochastic partial differential equa-
tions and approximated with sparse difference matrices, hence providing com-
putational efficiency.

3. The priors can be constructed to be discretisation-invariant, which means,
loosely speaking, that the discrete covariances converge to continuous covari-
ances at the discretisation limit.

We define Gaussian Markov random fields as zero-mean stationary random fields with
a covariance function

C(x, x′) = C(x− x′) =
1

(2π)d

∫

Rd

1
∑K
k=0 ck|ξ|2k

exp(−iξ · (x− x′))dξ,

where x, x′ ∈ Rd, d = 1, 2, . . . is the dimensionality, c0 > 0 and ck ∈ R and K > 0
is some integer. The polynomial P (ξ) :=

∑K
k=0 ck|ξ|2k > 0 is our object of interest,

3



4 CHAPTER 1. INTRODUCTION

because we can relate the polynomial to the study of stochastic partial differential
equations. Consider P (ξ) = (1 + ξ2)2, where ξ ∈ R. We note that this corresponds to
a stochastic partial differential equation of the form

√
P (ξ)X̂ = (1 + ξ2)X̂ = Ŵ ⇔ (1−∆)X =W, (1.1)

where X is the unknown of interest, W is white noise, ∆ is the Laplacian, and ’hat’-
notation denotes Fourier-transformed objects.

We can also calculate the autocorrelation function of the random field defined through
Equation (1.1) in closed-form. Then the autocorrelation function is

C(x− x′) =
1

4
(1 + |x− x′|) exp (−|x− x′|) .

Let us denote by the vector X the discrete approximation of the continuous unknown
X . By using finite-differences, we can make a discrete approximation of X in Equation
(1.1) as

Xj −
Xj−1 − 2Xj +Xj+1

h2
= Wj ∼ N

(
0,

1

h

)
, (1.2)

where we have used the discretisation x ≈ jh, where j ∈ Z and discretisation step
h > 0. Equation (1.2) can be written as a sparse matrix approximation LX = W .

Later, we will show that the covariance of the discrete approximation (1.2) converges
to the continuous covariance at the discretisation limit h → 0. Lasanen 2012 [13,
14] showed that if the prior distributions converge, then in most cases the posterior
distributions also converge. Hence, from a computational point of view this means that
the posterior estimates are essentially independent of the discretisation, i.e. estimators
in different lattices look essentially the same.

These concepts comprise the scope of this thesis.

Outline of the thesis

This thesis is organised as follows:

Chapter 2 contains the main results of the thesis. We start by giving an introduc-
tion to Bayesian statistical inverse problems and make preliminary notes on Gaussian
stationary fields. Then, we define Gaussian Markov random fields in the continuous
domain. After that, we discuss discretisation of white noise and Gaussian Markov
random fields. We form the autocovariances defined through stochastic partial differ-
ence equations. We then consider how the discrete autocovariances converge to the
continuous ones. Then we consider band-limited approximations.

In Chapter 3, we consider how to form anisotropic and inhomogeneous priors. We
put an emphasis on how to model structural properties of an unknown field with
correlation lengths. Numerical examples are given. Finally we study the finite ele-
ment approach to correlation priors, i.e. how to construct the priors on unstructured
meshes.

In Chapter 4, we conclude the study and make some suggestion for future research.



Chapter 2

Continuous and discrete correlation
priors

We are interested in modelling prior distributions as function-valued stochastic pro-
cesses and fields. For this purpose, we consider Gaussian Markov random fields, as
we can construct them through sparse matrix approximations [19, 24, 26]. Our spe-
cific interest is in the interplay between the sparse matrix approximations and the
continuous random fields. We will start by defining basic concepts of Bayesian statis-
tical inverse problems and a number of concepts of stochastics, and then discuss the
continuous and discrete Gaussian Markov random fields.

2.1 Bayesian statistical inverse problems

In a typical Bayesian statistical inverse problem, the objective is to estimate the
posterior distribution of an unknown object X from its noise-perturbed indirect ob-
servations. Formally the observations are described as

m = A(X ) + e, (2.1)

where m is a known finite-dimensional vector of measurements, A is a known linear or
a non-linear mapping between function spaces, e.g. between separable Hilbert spaces
and a projection to some vector-space. The noise term e is a Gaussian random vector
with known statistical properties, i.e. we know its mean and covariance.

The solution of a Bayesian statistical inverse problem is an a posteriori probability
distribution. For a definition of posterior distributions and the required conditions
for Bayes’ formula in infinite-dimensional spaces, see Lasanen [13]. We give it as

D(dX|m) =
D(m|X )

D(m)
D(dX ).

The notation dX refers to integration with respect to a measure. D(m|X ) is the
likelihood density describing the observations and the statistical properties of noise.
D(m) is the probability density of the observations which, for fixed m, can be treated

5



6 CHAPTER 2. CORRELATION PRIORS

as a normalisation constant. The prior distribution D(dX ) reflects our subjective
information on the unknown X before any actual measurements are taken.

We are interested in sparse approximations of Gaussian Markov random field priors.
These priors can be best modelled with continuous models, as we can give autocorre-
lation functions in closed form. Later in this chapter, we consider discretised Gaussian
Markov random field priors and the convergence of the discrete GMRF autocorrela-
tion function to the continuous autocorrelation function. Lasanen 2012 [13, 14] showed
that provided the convergence of discrete Gaussian prior covariances, then also the
posterior solutions converge, i.e. the solutions of Bayesian statistical inverse problems
converge also. From the computational point of view, this means in practice that
solutions to inverse problems on different (dense enough) computational meshes are
practically the same. We refer to this property as the discretisation-invariant Bayesian
statistical inversion.

As noted in Paper II, the concept of discretisation-invariance, or discretisation-
independence, is still under debate. The literature on discretisation-invariant in-
version is rather vast, see for example [9, 12, 15, 13, 14, 18, 23]. Edge-preserving
discretisation-invariance studies include e.g. [16, 17]. From the point of view of this
thesis, discretisation-invariance falls down to the category of studying the interplay
between discrete and continuous equations [4, 5, 6, 28, 29, 30].

For a practical solution of an inverse problem, we have to apply some numerical dis-
cretisation scheme to the observations (2.1) and to the prior. Let us denote the discrete
approximation of X by X and the discrete version of the continuous observation model
in Equation (2.1) as

m = A(X) + e, e ∼ N (0,Σ).

Then, the finite-dimensional posterior distribution is

D(X|m) =
D(m|X)

D(m)
D(X) ∝ D(m|X)D(X), (2.2)

where D(X) is the prior density. Then given discretised observations of (2.1) and the
discrete GMRF prior, we can write the posterior distribution as (2.2) as an unnor-
malised probability density

D(X|m) ∝ exp

(
−1

2
(m−A(X))TΣ−1(m−A(X))− 1

2
(X − µ)TC−1(X − µ)

)
,

where the prior is distributed as N (µ,C). We omit D(m), as it is merely a normali-
sation constant.

We note that visualisation of the posterior density is difficult if the number of un-
knowns is higher than two. We follow the standard practice and compute the esti-
mates of the unknown from the posterior distribution. A natural estimate from the
posterior distribution is the conditional mean

XCM =

∫
XD(m|X)D(X)dX∫
D(m|X)D(X)dX

. (2.3)
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Another commonly used – and usually computationally simpler estimate – is the
maximum a posteriori (MAP) estimate. It is, in a sense, the maximum point of
the posterior distribution. The MAP estimate can be computed as a solution of the
minimisation problem

XMAP = arg min
X

{
(m−A(X))TΣ−1(m−A(X)) + (X − µ)TC−1(X − µ)

}
, (2.4)

which can be solved using iterative methods such as Gauss-Newton or sequential
quadratic programming methods. A numerically stable and efficient form for the
minimisation problem (2.4) can be found by expressing the inverse covariance matrices
using matrix square roots (e.g. Cholesky factors)

Σ−1 = HTH, C−1 = LTL.

The minimisation problem can then be cast in a form of a non-linear least-squares
problem

min
X
‖Z −B(X)‖2, where Z =

(
Hm

Lµ

)
, B(X) =

(
HA(X)

LX

)
.

This optimisation problem can be efficiently solved with any computational package
with for example as a sequence of linearised least-squares problems by applying QR-
decomposition or recursive methods such as the GMRES method [8].

We note that in the computation of the estimators (2.3) and (2.4), we typically need
to compute the inverse covariance matrices Σ−1 and C−1, or their Cholesky factori-
sations. This is also the case in the simulation of the random field, because we are
interested in performing matrix-vector operations of the form L−1v, where v is some
given vector. In many applications, the error covariance matrix Σ is low-dimensional,
possibly even diagonal. Hence, computation of Σ−1 is rather easy. However, the
number of elements of X can often be big, especially in higher dimensions. Hence,
computation of the inverse prior covariance matrix can be computationally expen-
sive. Therefore we aim to construct directly the inverse covariance matrix C−1 or its
Cholesky factor L with Gaussian Markov random field approximations. When L is a
sparse matrix, this can be efficiently evaluated without explicitly computing the (full)
matrix inverse L−1. Although the matrix L can be computed via factoring C−1, for
maximal numerical accuracy it is beneficial to compute it directly without computing
C−1. This is because the number of bits required for a given floating point precision
for constructing C−1 is twice the required bits for L.

Our main motivation, in this thesis, for studying Gaussian Markov random fields
is in applying them as prior distributions in Bayesian statistical inverse problems.
In Papers I, II and IV, we have considered Gaussian Markov random fields within
the framework of Bayesian statistical inverse problems and applied the methodology
to an electrical impedance tomography problem in Paper III. Studies of very high-
dimensional prior distributions arising from spatially sampled values of random fields
in Bayesian inversion are reported by Lasanen 2012 [13] and Stuart 2010 [31]. Särkkä



8 CHAPTER 2. CORRELATION PRIORS

et al. 2013 [25] and Solin et al. 2013 [27] applied Matérn and other types of spatio-
temporal Gaussian random fields to functional MRI brain imaging and prediction of
local precipitation, and in Hiltunen et al. 2011 [10] it was applied to diffuse optical
tomography. Other applications of Matérn fields include for example spatial inter-
polation carried out by Lindgren et al. [19]. They considered Matérn fields and the
weak convergence to the full stochastic partial differential equation solutions.

2.2 Preliminaries from stochastics

In the theory of Bayesian statistical inverse problems, the measurements m, noise e
and unknown X are modelled as statistical objects. Hence, it is necessary to define
some basic concepts of stochastics. Let (Ω,B, P ) be complete probability space.
B(Rd) is the Borel σ-algebra of Rd. We denote a set of random fields

{
X (x) : x ∈ Rd

}
.

The expectation of the random field is defined as

E (X (x)) =

∫

Ω

X (x)dP.

The covariance of the set of random field is

C(x, x′) := E (X (x)−E (X (x))) (X (x′)−E (X (x′)))

Following ([7] p. 200, Definition 5), we define stationarity of the random fields.

Definition 1 (Wide-sense stationarity). A continuous real-valued Gaussian field
X (x) is called wide-sense stationary, if its expectation and autocorrelation function
ACFX (s) can be given as

E(X (x)) = µ = Constant,

E(X (x)− µ)(X (x′)− µ) = ACFX (s),

where s := x− x′ and µ ∈ R is some constant. We also assume that ACFX (s) is an
absolutely integrable function.

In the following, because of notational simplicity, we choose µ = 0.

Wide-sense stationary processes and fields can be analysed by studying spectral pre-
sentations of the random functions. In order to define spectral density, we first need
to define the concept of Fourier transforms.

Definition 2 (Fourier transform pair). Let f be some absolutely integrable continuous
function. Then the Fourier transform of object f is given by an integral transform

f̂(ξ) =

∫

Rd

f(x) exp(iξ · x)dx
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and the inverse Fourier transform is defined by

f(x) =
1

(2π)d

∫

Rd

f̂(ξ) exp(−iξ · x)dξ

where x, ξ ∈ Rd.

Let us assume that the autocorrelation function ACFX (x) is a continuous function in
Rd. According to Bochner’s theorem [7], then there exists a probability measure P
on Rd which satisfies

ACFX (x) =
1

(2π)d

∫

Rd

exp(−iξ · x)dP (ξ).

Let us define power spectrum S(ξ) := P ′(ξ), where by prime we denote differentiation.
Then we can obtain a simplified form of Bochner’s theorem, which is called Wiener-
Khinchin theorem. Following Gikhman and Skorokhod [7], we summarise the theorem
as a remark.

Remark 1 (Wiener-Khinchin Theorem). Power spectrum and autocorrelatiom func-
tion of a wide-sense stationary process X are a Fourier transform pair

S(ξ) =

∫

Rd

ACFX (x) exp(iξ · x)dx

ACFX (x) =
1

(2π)d

∫

Rd

S(ξ) exp(−iξ · x)dξ.

Discrete objects are defined similarly with discrete Fourier transforms. This will be
dealt within subsequent sections.

2.3 Gaussian Markov random fields

We are motivated by using Gaussian Markov random fields as correlation priors for
Bayesian statistical inverse problems. The goal is to construct sparse matrix ap-
proximations of these priors. The approximations, as discussed later, are related to
polynomials in the continuous and to trigonometric polynomials in the discrete ap-
proximations.

Definition 3 (Gaussian Markov random field). Let

P (t) :=

K∑

k=0

ckt
2k > 0, for all t ∈ R

where c0 > 0 and ck ∈ R and K ∈ Z+. We call a random function X (x) a Gaussian
Markov random field, if it is wide-sense stationary with autocorrelation function

ACFX (x) =
σ2

(2π)d

∫
1

P (|ξ|) exp (−ix · ξ) dξ

=
σ2

(2π)d

∫
1

∑K
k=0 ck|ξ|2k

exp (−ix · ξ) dξ
(2.5)
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and K <∞.

The case K =∞ was considered in Paper IV, we will consider that in Section 2.4.

Let us turn our attention to the so-called Whittle-Matérn priors, known simply as
Matérn priors, named after the seminal work by Whittle [35] and Matérn [20]. These
priors were considered in Papers II, III and IV.

Example 1 (Matérn fields). A Gaussian Markov random field is called a Matérn
field, if its autocorrelation function is

ACFX (x) =
21−ν

Γ(ν)

( |x|
`

)ν
Kν

( |x|
`

)
, x ∈ Rd (2.6)

where ν > 0 is the smoothness parameter, ` is the correlation length, Γ is the gamma-
function, Kν the modified Bessel function of the second kind of order ν, and |x| is the
Euclidean distance. The power spectrum of the Matérn field is

S(ξ) =
2dπd/2Γ (ν + d/2)

Γ(ν)`2ν

(
1

`2
+ |ξ|2

)−(ν+d/2)

.

Let us consider the Matérn fields as solutions of stochastic partial differential equa-
tions. The following results are presented in more detail in Paper III.

Lemma 1. A Matérn prior can be given as a solution of a stochastic pseudodifferential
equation.

Proof. Let us denote by W as continuous white noise. If

X̂ = σ
√
S(ξ) Ŵ (2.7)

in the sense of distributions, then X is a Gaussian random field with an autocorrelation
function (2.6). Then, by first dividing (2.7) by

√
S(ξ) and carrying out an inverse

Fourier transform will give us

(
1− `2∆

)(ν+d/2)/2 X =
√
α`dW, (2.8)

where the constant α is

α := σ2 2dπd/2Γ (ν + d/2)

Γ(ν)
.

The operator
(
1− `2∆

)(ν+d/2)/2
is a pseudodifferential operator defined by its Fourier

transform. �

Discretisation schemes of pseudodifferential equations often lead to full matrix ap-
proximations. Therefore we prefer to work with elliptic operators.
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Corollary 1. A special case of the Matérn prior can be given as a stochastic partial
differential equation (

I − `2∆
)
X =

√
α`dW. (2.9)

Proof. We will fix the smoothness parameter by setting ν = 2 − d/2 and choose
d = 1, 2, 3. Then the operators are elliptic operators instead of pseudodifferential
operators. �

2.4 Systems of stochastic difference equations

Instead of the Matérn field, let us consider a rather more general construction. These
were studied in detail in Paper I. Instead of a single matrix equation, we consider sys-
tem of infinite-dimensional matrix difference equations. Given the Gaussian Markov
random field as in Equation (2.5), we give it equivalently as a system of equations




L0

L1

...

LK



X =




W (0)

W (1)

...

W (K)



,

where L0 is an infinite-dimensional diagonal matrix and Lk-matrices are infinite-
dimensional k(th)-order difference matrices. For example

L1X =




. . .
. . .

−1 1
. . .

. . .

−1 1
. . .

. . .







...

Xj−1

Xj

Xj+1

...




=




...

W
(1)
j−1

W
(1)
j

W
(1)
j+1
...



.

Higher order difference matrices are constructed similarly. The infinite-dimensional
covariance matrix of X, in the sense of least-squares, is given as

C =

(
K∑

k=0

LTk Σ−1
k Lk

)−1

=

(
K∑

k=0

σ2
kL

T
k Lk

)−1

, (2.10)

where W (k) ∼ N (0, σ2
kI) and σ2

k are some scaling factors.

In Paper I, we defined these priors on the whole lattice hZ. This definition was given
as:

Definition 4 (One-dimensional discrete correlation priors). Discrete correlation pri-
ors with a power α and a correlation length ` are certain zero-mean Gaussian processes
on j ∈ Z. Then the correlation priors are defined by combining white-noise measure-
ments

Xj ∼ N (0, c−1
0 α`/h)
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with some of the following virtual convolution measurements (which are statistically
independent)

∆Xj ∼ N (0, c−1
1 αh/`)

...

∆KXj ∼ N (0, c−1
K α(h/`)2K−1)

where ∆k is a k(th)-order difference operator and ∆Xj = Xj −Xj−1. The correlation
prior with the highest difference of K(th) order is called a K(th)-order correlation prior.

It is apparent, that priors defined through these equations lead to similar formulas
as in Equation (2.10). We note that in Definition 4, we have taken the discretisation
parameter h into account, because we require the discrete correlation priors to con-
verge to continuous ones at the continuous limit. We note that for a fixed correlation
function form, the choices of ck, ` and α are not unique. Therefore, we find it prac-
tical, to first fix the ck terms. Then the correlation length ` scales the discretisation
parameter h and the power α scales the variance.

Combining white-noise measurements with virtual difference measurements might
seem obscure, if one thinks separately of the effect of white noise and difference
measurements to the posterior distribution. The catch is in how the combination
is carrued iyt and what is the corresponding prior covariance. The covariance might
be counterintuitive to the prior beliefs related to virtual measurements of different
orders.

Autocorrelation function

Now our objective is to calculate the continuous limits of the discrete processes via
their autocorrelation functions. First, we let X := {Xj}∞j=−∞ have values in the

space of doubly-infinite sequences of real numbers RZ. We defined stationarity for
continuous random processes in Definition 1. For discrete processes definition is anal-
ogous. Discrete stationary random processes have a constant mean and a covariance
satisfying

E (XjXj′) = E (Xj−j′X0) =: ACFX(j − j′),

where j, j′ ∈ Z.

Let wk = {wk,j}∞j=−∞ ∈ RZ have only finitely many non-zero elements for k = 1, ...,K.
Consider virtual independent measurements

(wk ∗X)j =

∞∑

m=−∞
wk,(j−m)Xm ∼ N(0, σ2

k), k = 0, ..,K, j ∈ Z

on X.
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Definition 5 (Discrete Fourier transform). The discrete Fourier transform of an
absolutely summable sequence w ∈ RZ is

ŵ(ξ) :=

∞∑

j=−∞
exp(iξj)wj , ξ ∈ [−π, π)

and the inverse discrete Fourier transform is

wj :=
1

2π

∫ π

−π
exp(−iξj)ŵ(ξ)dξ.

Recall, that X is a random function on Z if (Xjn1
, ...., Xjnd

) is a random vector for
any finite collection of indices jnk

∈ Z. The random function is called Gaussian if the
above random vectors have a multivariate Gaussian distribution.

Let X be a Gaussian random function on Z having zero-mean and a stationary co-
variance ACFX(j) with a property

∑∞
k=−∞ACFX(j) <∞. The spectrum SX of the

stationary process X is the Fourier transform of the autocorrelation function

ACFX(j) =
1

2π

∫ π

−π
exp(−iξj)SX(ξ)dξ.

Definition 6. If PX(ξ)SX(ξ) = 1 almost everywhere, then PX(ξ) is called Fourier
domain Fisher information of X.

In the following lemma we use the term additional measurements for any measurement
combined with measurement X.

Lemma 2. The Fourier domain Fisher information PX(ξ) > 0 of X is additive
with respect to virtual convolution measurements in the sense that PX(ξ) increases by
σ−2|ŵ|2 when an additional convolution measurement w ∗X ∼ N (0, σ2) is given.

For the proof of Lemma 2, see Paper I.

Theorem 1. If |ŵk|2 > 0 for some k ∈ {0, ...,K} the prior covariance operator
formed from virtual measurements (2.4) of X is

ACFX(j) =
1

2π

∫ π

−π

exp(−iξj)
∑K
k=0 σ

−2
k |ŵk(ξ)|2

dξ. (2.11)

Proof. In the above lemma, choose as the original Fourier-domain Fisher information
|ŵk|−2. Use additivity of the Fourier domain Fisher informations for other convolution
measurements to obtain the result. �
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Continuous limit of the autocorrelation function

The prior covariances corresponding to virtual measurements are calculated by for-
mula (2.11).

Theorem 2. The discrete autocovariance corresponding to a system of stochastic
difference equations

Xj ∼ N (0, c−1
0 α`/h)

Xj −Xj−1 ∼ N (0, c−1
1 αh/`)

is given as

ACFX(j) =
α

2π

∫ π

−π

exp(−iξj)
h/`+ `/h (2− 2 cos(ξ))

dξ.

Proof. We first define w0 = δj and w1 = δj − δj−1. Then by simple algebra

ŵ0 = 1, and σ−2
0 |ŵ0|2 = h/(α`)

ŵ1 = 1− exp(−iξ), and σ−2
1 |ŵ1|2 = `/(αh) (2− 2 cos(ξ)).

Claim follows from using the additivity of the Fourier domain Fisher information
(Lemma 2) and by using Equation (2.11). �

Now we want to have convergence of the discrete autocorrelation function at the
discretisation limit h→ 0.

Theorem 3. The discrete autocovariance given in Theorem 2, converges to a contin-
uous stationary process with autocorrelation function

ACFX (x) =
α

2
exp

(
−|x|
`

)
.

Proof. We defined the autocorrelation function as

ACFX(x) =
α

2π

∫ π

−π

1

h/l + l/h (2− 2 cos(ξ)
exp(−iξx)dξ

=
1

2π

∫ π

−π

α

h/l + l/h (1 + ξ2B(ξ))
exp(−iξx)dξ,

where B(ξ) = ((2−2 cos(ξ))/ξ2−1)/ξ2. This function has asymptotic behaviour O(1)
as ξ approaches zero. Taking ξ′ = (l/h)ξ as the integration variable we obtain

ACFX(x) =
α

2π

∫ πl/h

−πl/h

1

1 + ξ′2(1 + (ξ′h/l)2B(ξ′h/l))
exp(−iξ′x)dξ′.

For any h, the integrand is dominated by (1 + ξ′24/π2)−1. By denoting ' the nearest
integer, we can use Lebesgue’s dominated convergence theorem to obtain the contin-
uous limit

ACFX (x) = lim
h→0

ACFX(jh)|j'x/h =
α

2π

∫ ∞

−∞

exp(−iξ′x/l)
1 + ξ′2

dξ′.
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Figure 2.1: The correlation profile of Ornstein-Uhlenbeck prior obtained by correlation
priors. On the top left panel, the continuous limit ACFX (x) is denoted by the solid
line and the discrete correlation prior ACFX(jh)|j'x/h pointwise by the circles. The
top right panel shows the correlation priors ACFX(jh) with correlation lengths 5
plotted by circles and 10 by crosses. If scaling works as we want, every second point
of the longer correlation length plot should correspond to every point of the shorter
correlation length plot. The bottom left panel shows the behaviour of the variance
ACFX(0, `) as a function of correlation length ` when the discretisation is h = 1.
The bottom right panel shows the absolute difference of the plot with correlation
length 5 and every second point of the plot with correlation length 10 ACFX(j, ` =
5)−ACFX(2j − 1, ` = 10).
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Hence, the claim follows by evaluating the integral with for example calculus of
residues. �

We note that this is the covariance of the Ornstein-Uhlenbeck process. We have
studied the limit behaviour numerically in Figure 2.1 (originally in Paper I). Similar
techniques apply to more complicated correlation priors, as demonstrated in Papers I
and IV.

Band-limited fields

In Papers I, II and III, we were mostly interested in Gaussian Markov random fields
characterised by polynomials P (t) =

∑K
k=0 ck|t|2k, where c0 > 0 and ck ≥ 0 when

k = 1, . . . ,K. In paper IV, we considered also the case when ck ∈ R. The reason for
this is that we wish to consider

P (t) :=
(
κ2 + t2

)α
,

where t ∈ R and α > 0 is fractional. The function P has the well-known Taylor series

(
κ2 + t2

)α
=

∞∑

k=0

akκ
2(α−k)t2k, (2.12)

where

a0 = 1,

ak =
α(α− 1) · · · (α− k + 1)

k!
for k ≥ 1.

We note that the series (2.12) converges for |t| ≤ κ and diverges for |t| > κ. This
leads us to the study of band-limited Matérn fields

C(s) =
σ2

(2π)d

∫

|ξ|≤κ

exp (−iξ · s)
∑K
k=0 ck|ξ|2k

dξ.

The discrete presentation is

C(jh) =
σ2

(2π)d

∫

(−π,π)d

exp (−iξ · jh)
∑K
k=0 ckh

d−2k
(∑d

p=1(2− 2 cos(ξp))k
)dξ.

Following the Definition 4 of correlation priors, we can write the k(th)-order difference
matrix Lk in a similar way to Equation (2.10). The corresponding covariance matrices

Σk are obtained from the constants ckh
d−2k and they are Σk = h2k−1

ck
I. Using the ad-

ditivity of the precision matrix (Lemma 2), we may then write the discrete covariance
with a matrix equation as

C =
(
LTL

)−1
=

(
K∑

k=0

LTk Σ−1
k Lk

)−1

=

(
K∑

k=0

akκ
2(α−k)h1−2kLTk Lk

)−1

. (2.13)
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Given the matrices Lk and ΣK in Equation (2.13), our aim is to construct an upper
triangular sparse matrix L. The full covariance matrix C in Equation (2.13), has both
ck > 0 and ck < 0 terms, which we relate to constructing L with Cholesky decomposi-
tion. We choose this construction, as we aim to construct the upper triangular matrix
L term-by-term, that is, we recursively apply the Cholesky decomposition in order
to get the required presentation. Cholesky decomposition algorithms are covered in
standard literature [8].
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Figure 2.2: (a) Covariance function of a band-limited approximation to one-
dimensional Matérn spectral density. (b) Covariance function of a 4(th) order Taylor
series expansion. Although the plain band-limited approximation is quite inaccurate,
the truncated Taylor series on the whole R is quite accurate.

As an example, we choose d = 1, σ2 = 1, α = 3/2 and κ = 1 with truncation
parameter K = 4, and set

P (t) = 1 +
3

2
t2 +

3

8
t4 − 1

16
t6 +

3

128
t8. (2.14)

The polynomial is clearly everywhere positive and hence the spectral density is valid in
the whole R. Thus we can extend the integration area to the whole space. Figure 2.2
(from Paper IV) illustrates the resulting approximation.

Let us consider partitioning the precision matrix C−1 as

P+ − P− :=
∑

ak≥0

akκ
2(α−k)h1−2kLTk Lk −

∑

ak<0

|akκ2(α−k)|h1−2kLTk Lk,

where the partitioned precision matrices P+ and P− correspond to the parts to be
sequentially updated with positive and negative signs, respectively. When making
the Cholesky decomposition, we first loop over the positive ck coefficients and carry

out Cholesky updates with
√
akκ2(α−k)h1−2k Lk. Then we do the same for the nega-

tive coefficients with the so-called Cholesky downdates. We note that it is advisable
not to mix the updates with positive and negative signs, because this might break
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the positive-definiteness property of the covariance matrix. This might break the
algorithm and hence, we propose to carry out updates with positive signs first and
downdates with negative signs in the final part of the algorithm.

Figure 2.3 (from Paper IV) shows an example of a covariance function approximation
formed with the above procedure as well as example realisations of the process.
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Figure 2.3: (a) Exact covariance function of the one-dimensional example of Equation
(2.14) (σ2 = 1, α = 3/2, κ = 1, K = 4), the truncated Taylor series approximation
and its finite-difference approximation with discretisation step h = 0.1. In the finite-
difference computations, we have used periodic boundary conditions in an extended
domain and cropped the image. (b) Realisations from the process simulated via the
discretised approximation.

2.5 Correlation priors on torus

Previously, we have discussed correlation priors on the whole lattice Z. For practical
inverse problems, we would prefer to define correlation priors on some finite interval.
However, then we would have two boundary points and these would cause boundary
effects. We overcome this problem by periodic boundary conditions and hence mitigate
the boundary effects. Thus, instead of the whole space Z, we consider the problem on
a circle Z/2N .

Following Paper II, we start by defining a discretisation sequence

L (N,h) := {jh | j ∈ Z ∩ [−N,N)},

where the discretisation step h > 0 and the number of elements #L (N,h) = 2N .
The idea is to define correlation priors on circle and let N →∞ and h→ 0. In higher
dimensions, we study problem on torus (Z/2N)d.

When we change from whole space to circle, or torus, we end up studying circulant
matrices. The importance of circulant matrices is that they are diagonalised by the



2.5. CORRELATION PRIORS ON TORUS 19

Discrete Fourier Transform and hence, all their properties are defined by the first row.
The other option would be to use symmetric Toeplitz matrices. However, because of
the convolution theorem, circulant matrices are closed under matrix multiplication.
The Toeplitz matrices are not.

Let us consider discretisation of the Matérn field in Equation (2.9). We choose dis-
cretisation sequence L (N,h). For simplicity, let us start with d = 1. Then the
continuous equation is

LX :=

(
I − `2 ∂

2

∂x2

)
X =W. (2.15)

We have two objects to discretise, the linear operator in the left-hand-side and the
white noise in the right-hand-side. Here, we start from the results and then go through
discretisation in steps. As we assumed periodic boundary conditions, we set XN =
X−N . With a certain finite-difference scheme, we can give an approximation of (2.15)
with d = 1 as in (1.2) as




1 + 2 `
2

h2 − `2

h2 − `2

h2

− `2

h2 1 + 2 `
2

h2 − `2

h2

. . .
. . .

− `2

h2 1 + 2 `
2

h2 − `2

h2

− `2

h2 − `2

h2 1 + 2 `
2

h2







X−N
X−N+1

...

XN−1




=




W−N
W−N+1

...

WN−1



,

where Wj ∼ N (0, α`/h). This equation is of the form we are searching for, i.e.
LX = W with a sparse matrix L. This makes the construction suitable for efficient
computer solvers [22], i.e. the matrix-vector-product L−1W is fast to compute.

Following Paper III, we can make similar constructions in higher dimensions. Let us
take d = 2 and denote

A :=




2 `
2

h2 − `2

h2 − `2

h2

− `2

h2 2 `
2

h2 − `2

h2

. . .
. . .

− `2

h2 2 `
2

h2 − `2

h2

− `2

h2 − `2

h2 2 `
2

h2



.

Let us denote by ⊗ the Kronecker product and let J be an identity matrix. Then we
can write

LX = (I +A⊗ J + J ⊗A)X = W

where Wj1,j2 ∼ N (0, α`2/h2) for all j1, j2 ∈ Z. Hence, we obtained the sparse matrix
approximation of the two-dimensional Matérn field we are looking for.

Now, let us study the discretisation of an operator equation

IX = X =W,

where I is an identity operator and W is continuous white noise. The discretisation
of this formulation was considered in Paper II. The discretised white noise W is
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a Gaussian multivariate random variable with identity matrix I as its covariance.
Hence, we can consider it also as wide-sense stationary process. This implies that X
is also a finite stationary random process.

We want to obtain a convergence to a continuous object when making discretisation
denser and denser, i.e. we want to have X → X in the discretisation limit. Hence,
the limit is basically a continuum. This was considered in detail in Paper II. Here we
consider the most important building blocks. First of all, we need to take the topol-
ogy of the continuum into account and embed the discretisation in a corresponding
continuum.

First, we define the intervals as

� a..b�:= [a, b) ∩L (N,h)

and a length measure

Len(� a..b�) := h#� a..b� .

The notation [·] is the Iverson bracket

[A] :=





1, if A is true

0, otherwise.

The reason for the notation is that we can use it as an indicator function. In Lemma
4.4 in Paper II, we had white noise on lattice L (N,h) embedded in R.

Lemma 3. If W is white noise with the parameter set L (N,h), then W ′ defined by

W ′(� a..b�) :=
√
h

∑

j∈L (N,h)

W (jh)[jh ∈� a..b�]

is white noise on L (N,h) embedded in R.

In order to obtain convergence, as we work on lattice L (N,h), we will link the lattice
parameters h =

√
π/N or as N = bπ/h2c. We know that as h → 0 and N → ∞,

we will cover the whole real line R. Now we can argue that there has to be some
kind of convergence as N →∞. Construction is based on strong-weak convergence of
probability measures. This was carried out in detail in Paper II. Here it is enough to
note that the limit exists.

Let us denote by Ld(N,h) a d-dimensional discretisation sequence. The d-dimensional
generalisation of Lemma 3, was given in Lemma 4.5 (Paper II). It says:

Lemma 4. If W is white noise with parameter set Ld(N,h), then W ′ defined by

W ′(� a..b�) := hd/2
∑

j∈Ld(N,h)

W (j)[j ∈� a..b�]

is white noise on Ld(N,h) embedded in Rd.
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The discretisation of the linear operator in Equation (2.15) was considered in detail
in Section 4.3 in Paper II, where the differential operator was parameterised there as
(−λ0I + λ1∆)X =W, where λ0λ1 > 0. Let us give it here with the same parameter-
isation and discretisation on lattice L (N,h) as

−λ0hXj − λ1h
−1(Xj−1 − 2Xj +Xj+1) = W ′(� jh�).

If we embed the discretisation step h in the parameters λ0 and λ1, and if we remember
that we have one h1/2 inside the noise term, we can write the discrete equation in the
interior points as

λ1Xj − (λ0 + 2λ1)(Xj−1 − λ1Xj +Xj+1) = W ′j ∼ N (0, 1), (2.16)

where λ1 = µ1h
−3/2 and λ0 = µ0h

1/2.

We want to have again convergence of the autocorrelation function in the discretisation
limit. This was covered in Theorem 5.1 in Paper II.

Theorem 4. Suppose λ0λ1 > 0. Then the discrete stationary processes obtained cor-
responding to the Equation (2.16) converge in the strong-weak topology to a stationary
Gaussian process with the autocorrelation function

ACFX (λ0, λ1)(x) =
1

4αλ2
0

(1 + |x|/α) exp(−|x|/α),

where α =
√
λ1/λ0. If the discretisation for the Laplacian is given by three lattice

points, we have

ACFN (λ0, λ1)(x̃) = ACF(λ0, λ1)(x̃) + ON−α

with α = 3/8. The rate of convergence is α = 3/5 with the five-point stencil. The
optimal α is obtained with stencil length n = 7 and α = 3/4.

The proof was given in Section 5 in Paper II in four lemmas. The autocorrelation
function of the discrete stationary was calculated in Lemma 5.3. The asymptotic
estimate with convergence rates were covered in Lemmas 5.4 and 5.5 with different
stencils. The closed-form limit of the autocorrelation was given in Lemma 5.6.

If we denote ` := α =
√
λ1/λ0 and choose λ0 = `−1/2 we get λ1 = `3/2 and

ACFmod(l)(x) := ACF(`−1/2, `3/2)(x) =
1

4
(1 + |x|/`) exp(−|x|/`).

We note that this is up to a scaling factor the same result as in [32].

The two-dimensional Matérn field was considered in Theorem 6.1 in Paper II.

Another example in Paper II was considered when we study the linear opetor (−iλ0 +
λ1∆) instead (−λ0 + λ1∆). Then we study complex-valued stochastic field

(−iλ0 + λ1∆)X =W.
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As shown in Paper II, this corresponds to the case when study a pair of equations




λ1∆X = W (1)

λ0X = W (2).

where W (1) ∼ W (2) are independent real Gaussian white noises. This is of course a
special case of the continuous limit of discrete correlation priors of Definition 4. In
Paper II, one-dimensional case was considered in Theorem 7.1 and two-dimensional
case in Theorem 7.2.

2.6 Table of analytical formulas for correlation priors

Let us conclude the results of this Chapter with a number of analytical formulas for
correlation priors. We give them with respect to to the Fourier domain Fisher informa-
tion P (|ξ|), because it immediately shows the relationship of the prior to its system of
partial differential equation representation, and hence to the fast approximation with
difference matrices. The counterpart is the autocorrelation function, i.e. the Fourier
transform of the reciprocal of P (|ξ|).
We first give a number of one-dimensional priors, studied especially in Papers I and
II as

P (ξ) = 1 + |ξ|2 ⇔ ACFX (x) =
1

2
exp (−|x|)

P (ξ) = 1 + |ξ|4 ⇔ ACFX (x) =
1

2
exp

(
− |x|√

2

)
sin

( |x|√
2

+
π

4

)

P (ξ) = (1 + |ξ|2)2 ⇔ ACFX (x) =
1

4
(1 + |x|) exp (−|x|) .

The two-dimensional correlation priors were covered in Paper II. Hence, we give a
special case of the Matérn field as

P (ξ) = 1 + |ξ|4 ⇔ ACFX (x) =
1

4π
|x|K1(|x|),

where K1 is the modified Bessel function of the second kind. We give the second one
as

P (ξ) = (1 + |ξ|2)2 ⇔ ACFX (x) = − 1

2π
kei(|x|),

where kei is the Thomson function x 7→ Imag (K0(x exp(iπ/4))).

We could also consider the similar Fourier domain presentation in a two-dimensional
case as for the Ornstein-Uhlenbeck. Formally, in the sense of distributions, we can
write

P (ξ) = 1 + |ξ|2 ⇔ ACFX (x) = 2πK0(|x|).
The autocorrelation function has a logarithmic singularity at x = 0. This was studied
in detail in [2].
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A d-dimensional Matérn field c¡n be presented

P (ξ) =
Γ(ν)`2ν

2dπd/2Γ (ν + d/2)

(
1

`2
+ |ξ|2

)ν+d/2

⇔ ACFX (x) =
21−ν

Γ(ν)

( |x|
`

)ν
Kν

( |x|
`

)
.

Finally, we give the squared exponential function with a Taylor expansion at ξ = 0:

P (ξ) = exp

(
1

2
ξ2

)
≈ 1 +

1

2
ξ2 +

1

8
ξ4 +

1

48
ξ6 + . . . ⇔ ACFX (x) = exp

(
−1

2
x2

)
.

We can make a Gaussian Markov random field approximation by truncating the Taylor
expansion. Otherwise the sparse matrix approximation would become a full matrix.





Chapter 3

Non-stationary correlation priors
and unstructured meshes

In this chapter, we start from the isotropic correlation priors and go to anisotropic and
inhomogeneous priors. Finally, we consider finite element formulation, as with them
we can make inversion on complex domains on unstructured meshes. This chapter is
almost completely based on Papers II and III. With anisotropic and inhomogeneous
correlation priors, we can make advanced correlation structures of the unknown based
on, for example, physical models or empirical observations. These were considered in
Paper III for electrical impedance tomography. Similarly, in [21, 34] we applied the
methodology for ionospheric tomography.

Many of the results in this chapter do not yet have rigorous mathematical proofs,
i.e. we have not yet studied rigorously the convergence of discrete inhomogeneous
correlation priors to continuous priors. The same applies for the correlation priors
on unstructured meshes. Therefore, here, the approach is more computationally ori-
ented than in the previous chapter. However, we conjecture that the inhomogeneous
correlation priors are discretisation-invariant. This has been studied numerically (see
Paper III), and the numerical results agree with the conjecture. Rigorous convergence
studies are outside the scope of this thesis and hence we leave them for future studies.

3.1 Anisotropic priors

In Chapter 2, all the discussions concentrated on stationary random fields. We call
such priors isotropic, because the lengths of the covariance ellipsoid axes are the same
for all coordinate directions. As an example, consider a two-dimensional Matérn field
with fixed correlation length ` in both coordinate directions. Then our only structural
model for the unknown is to change the isotropic correlation length `. In Figure 3.1
(from Paper III), we have plotted four realisations of the Matérn fields with varying
correlation lengths. Hence, we can model the unknown by changing the isotropic
correlation length `.

The first step in constructing more flexible priors is to change from isotropic to
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Figure 3.1: Samples of an isotropic correlation prior on 512× 512 lattice with varying
correlation lengths ` = 5, 15, 40, 100 and discretisation step h = 1.

anisotropic priors. An example of such a construction is given in Lemma 6.2 in Paper
II, where we considered the anisotropic two-dimensional Matérn field. The idea is
that we replace the linear differential operators by weighted operators (`d∂n)k, where
`d is the correlation length in the d(th) coordinate direction. The example in Paper II
then had autocorrelation function

ACFX (`1, `2)(x) =
ACFX (x1/`1, x2/`2)

`1`2
.

Hence, it is a scaled autocorrelation function and as such other properties remain
similar to the previous chapter, i.e. we can make sparse approximation of such fields.
The autocorrelation function then has covariance ellipses of the form

x2
1

`21
+
x2

2

`22
= c2.

Examples of two such priors are in Figure 3.2, where in the top panel, we have two
realisations of an anisotropic Matérn prior.

The next step is to rotate the covariance ellipse, i.e. we tilt the covariance ellipse by
a rotation on a plane with angle θ. The contours of this function are of the form

x2
1θ

`21θ
+
x2

2

`22
= c2
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Figure 3.2: Three samples of an anisotropic correlation prior and, bottom right, one
sample from an inhomogeneous correlation prior with spatially varying θ. Correlation
lengths in all samples `1 = 10, `2 = 100 and discretisation step h = 1. All samples
are on 512× 512 lattice.

which in the original coordinate system is an ellipse with tilt θ.

As an example, we consider a two-dimensional case in which we would like to have
correlation length `1 to the angle θ with respect to the x-axis and to the direction or-
thogonal to the previous one. The Whittle-Matérn field for such case can be modelled
using rotations (see Paper II). Since

RTR =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)(
`21 0

0 `22

)(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)

=

(
a2
θ + b2θ aθcθ − bθdθ

aθcθ − bθdθ c2θ + d2
θ

)
,

we write the weighted formulation as a stochastic partial differential equation

(
I − (a2

θ + b2θ)
∂2

∂x2
1

+ (c2θ + d2
θ)
∂2

∂x2
2

+ 2(aθcθ − bθdθ)
∂2

∂x1∂x2

)
X =

√
α`1`2W. (3.1)

The only new object to discretise is the operator ∂2

∂x1∂x2
. Any regular finite-difference

approximation can be used as an approximation for this operator. We have plotted
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samples of the anisotropic prior with varying θ in the bottom right panel in Figure
3.2.

To summarise, anisotropic priors can be obtained through change of variables and
rotation of the covariance ellipse. Hence, results discussed in Chapter 2 are technically
rather easy to generalise to anisotropic cases, as discussed in Paper II.

3.2 Inhomogeneous priors

Let us now consider inhomogeneous priors in d = 2. We first define parameter fields
`1 = `1(x), `2 = `2(x) and θ = θ(x). We then construct the prior by discretising
Equation (3.1) on some lattice with variable correlation lengths and tilt. As an ex-
ample, let us choose that `1 and `2 constants with `1 > `2. In order to demonstrate
the flexibility of the inhomogeneous correlation priors, let us choose the tilt angle to
change in such a way that we get onion-shaped features. The bottom right panel in
Figure 3.2, shows the realisation of such a prior.

As another example of an inhomogeneous prior, let us consider a two-dimensional case
with a squared exponential autocovariance exp(−|x|2/`2). The Fourier transform of a
squared exponential is also a squared exponential, hence we have the power spectrum

S(ξ) =
απ

`1`2
exp

(
−`

2
1ξ

2
1

4
− `22ξ

2
2

4

)
. (3.2)

We approximate the squared exponential covariance via the power spectrum by a twice
differentiable approximation. Instead of (3.2), we use unscaled squared exponential
function (which we can obtain by a change of variables). By choosing ck = (1/2)k/k!,
we construct the approximation by a truncated series, i.e. as a polynomial

exp

(
−1

2
|ξ|2
)

=
1∑∞

k=0 ck|ξ|2k
≈ 1∑2

k=0 ck|ξ|2k
. (3.3)

Similarly to Definition 4, we note that the (2k)(th)-order polynomials in Equation
(3.3) correspond to the k(th) order linear differential operator Lk, i.e. convolution
operators. In order to obtain a sparse matrix approximation for the two-dimensional
prior, this additive object corresponds to a system of stochastic partial differential
equations of the form





√
c0X (x) =

√
α`1`2W(0),

√
c1`1

∂
∂x1
X (x) =

√
α`1`2W(1,2),

√
c1`2

∂
∂x2
X (x) =

√
α`1`2W(1,2),

√
c2

(
`21

∂2

∂x2
1

+ `22
∂2

∂x2
2

)
X (x) =

√
α`1`2W(2),

(3.4)

where W(·) are formal continuous white noises that are independent of each other.
We omit here π, which was in the power spectrum in Equation (3.2), as it is merely
a constant scaling term.
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Then, the discrete approximation of the continuous operator equations (3.4) can be
given as a system of stochastic partial difference equations,





Xj1,j2 =
√

α`1`2
c0h1h2

W
(0)
j1,j2

,

Xj1,j2 −Xj1−1,j2 =
√

αh1`2
c1`1h2

W
(1,1)
j1,j2

,

Xj1,j2 −Xj1,j2−1 =
√

α`1h2

c1h1`2
W

(1,2)
j1,j2

,

`21
h2
1

(Xj1+1,j2 − 2Xj1,j2 +Xj1−1,j2) +
`22
h2
2

(Xj1,j2+1 − 2Xj1,j2 +Xj1,j2−1)

=
√

α`1`2
c2h1h2

W
(2)
j1,j2

.

For an inhomogeneous prior, we write




Xj1,j2 =
√

αj1,j2`1,(j1,j2)`2,(j1,j2)

c0h1h2
W

(0)
j1,j2

Xj1,j2 −Xj1−1,j2 =
√

αj1,j2
h1`2,(j1,j2)

c1`1,(j1,j2)h2
W

(1,1)
j1,j2

Xj1,j2 −Xj1,j2−1 =
√

αj1,j2
`1,(j1,j2)h2

c1h1`2,(j1,j2)
W

(1,2)
j1,j2

`21,(j1,j2)

h2
1

(Xj1+1,j2 − 2Xj1,j2 +Xj1−1,j2) +
`22,(j1,j2)

h2
2

(Xj1,j2+1 − 2Xj1,j2 +Xj1,j2−1)

=
√

αj1,j2`1,(j1,j2)`2,(j1,j2)

c1h1h2
W

(2)
j1,j2

.

By using a stacked matrix, and then calculating the covariance, we end up with a
similar formulation as in Equation (2.13), but for the inhomogeneous covariance.

3.3 Correlation priors on unstructured meshes

Previous discussion concentrated on using finite-difference methods. Such methods
are computationally efficien,t especially for linear inverse problems on rather simple
domains, such as rectangles or similar. However, if we wanted to study non-linear
inverse problems on non-trivial domains, such as electrical impedance tomography in
clinical imaging, we prefer to work on unstructured meshes and finite element methods.
These were covered in detail in Paper III. Let us review the construction of the Matérn
priors in such cases. Other good references on Matérn fields on unstructured meshes
include for example [19].

For a continuous random field X , we define

〈X , φ〉 :=

∫
X (x)φ(x)dx,
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where φ belongs to the Schwartz space S(Rd). Generalised random variable white
noise is defined as

E 〈W, φ〉 = 0 and E (〈W, φ〉 〈W, ϕ〉) =

∫
φϕdx. (3.5)

for all φ, ϕ ∈ S(Rd).

Constructing the Matérn field according to Equation (2.8) corresponds to finding an
X such that 〈

(I − `2∆)X , φ
〉

=
〈√

α `dW, φ
〉

=
〈
W,
√
α `d φ

〉
(3.6)

for all φ ∈ S(Rd). For practical purposes, we limit ourselves to a bounded domain.
Hence, let Ω ⊂ Rd be a bounded Lipschitz domain. The problem now is to find an X
on Ω such that it satisfies (3.6). However, this problem is not uniquely solvable, since
if X is a solution of (3.6), also X + g is also a solution when g(x) = ea·x with a ∈ Rd
such that |a| = `−1. Therefore, we have to specify additional conditions to make the
solution unique. Following Paper III, we specify some of these common boundary
conditions:

X|∂Ω = 0 (Dirichlet condition)

∂X
∂n

∣∣∣∣
∂Ω

= 0 (Neumann condition) (3.7)

(
X + λ

∂X
∂n

)∣∣∣∣
∂Ω

= 0 (Robin condition)

where n is the unit outward normal vector on the boundary and λ is a constant.
We note that specifying boundary conditions leads to a change of the correlation
properties. These issues were addressed in detail in Paper III.

Now we derive a weak bilinear approximation of the problem. Let us consider the
Neumann boundary condition (3.7). For the derivation of the weak bilinear form, we
assume for a moment that X ∈ H2(Ω). Then Green’s first identity applied to (3.6)
gives

〈
(I − `2∆)X , φ

〉
=

∫

Ω

(I − `2∆)Xφdx

=

∫

Ω

Xφ dx+ `2
(∫

Ω

∇X · ∇φdx−
∫

∂Ω

∂X
∂n

φdσ

)

=

∫

Ω

Xφ dx+ `2
∫

Ω

∇X · ∇φdx.

(3.8)

The problem can be formulated as the following weak problem:

find X : a(X , φ) =
〈
W,
√
α`d φ

〉
for all φ ∈ H1(Ω)

where a is a bilinear function defined as

a(ϕ, φ) =

∫

Ω

ϕφdx+ `2
∫

Ω

∇ϕ · ∇φdx, ϕ, φ ∈ H1(Ω).
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However, the realisations of X may not belong toH1(Ω) and therefore above derivation
is not valid. In order to overcome this technical problem, we first approximate X
on a finite-element basis and apply the derivation above of the bilinear form to the
approximation. A finite-dimensional approximation of the unknown object is achieved
by approximating X by

X ≈
N∑

j=1

Xjψj

where Xj are random variables and ψj are basis functions H1(Ω), for example piece-
wise linear or polynomial functions. We substitute this approximation into (3.6) and
apply the Green’s theorem as in (3.8). Furthermore, we make the usual Galerkin’s
choice φ = ψi, which gives the following approximation for the problem:

find X ≈
∑

j

Xjψj : a(X , ψi) =
〈
W,
√
α`d ψi

〉
for all i = 1, . . . , N.

The above problem can be formulated as a matrix equation

LX =
(
M + `2S

)
X = W,

where X = (Xj) and the components of the matrices M and S and the vector W are

Mi,j =

∫

Ω

ψjψi dx, Si,j =

∫

Ω

∇ψj · ∇ψi dx, Wi =
〈
W,
√
α`d ψi

〉
.

By (3.5), W ∼ N (0,Γ), where

Γi,j =

∫

Ω

α`d ψjψi dx.

Therefore X ∼ N (0,Σ), where

Σ = L−1ΓL−1 and Σ−1 = LΓ−1L = (RL)TRL

and where Γ, usually a sparse matrix with a proper computational mesh, is easy to
invert and the Cholesky R of Γ−1 is easy to compute.





Chapter 4

Discussion and conclusion

Gaussian smoothness priors are widely used in Bayesian statistical inverse problems.
Similar constructions are used in deterministic Tikhonov regularisation via L2-norms.
In spite of their popularity, these methods typically do not provide proper integrable
smoothness priors. In this thesis, we have considered Gaussian Markov random field
priors on structured lattices with finite difference methods and on unstructured lattice
with finite element methods. In addition to being proper integrable priors, they are
also discretisation-invariant and computationally efficient.

We have discussed discretisation of the Gaussian Markov random fields through sys-
tems of stochastic partial difference equations. Via studying convergence of the dis-
crete random fields to the continuous ones, we have shown the discretisation-invariance
of the random fields. In conjunction with Lasanen’s 2012 studies [13, 14], we know
that then also the posterior distributions converge. In addition, we have discussed
modelling anisotropic and inhomogeneous priors on unstructured meshes, with which
we can model complex-shaped unknown.

A fundamental open problem is to study the convergence of the discrete inhomo-
geneous priors to continuous inhomogeneous priors. Another open problem is the
boundary condition terms, which would guarantee stationarity of the random field.

An interesting extension of the topic is to study Lévy alpha-stable distributions instead
of limiting oneself to Gaussian cases. Such priors provide edge-preserving inversion in
the case when α = 1, i.e. a Cauchy prior.

Using correlation priors is not very common in Bayesian inversion. Besides the Papers
of this thesis, we have used GMRF priors in ionospheric tomography. Other examples
of GMRF priors in Bayesian inversion includes for example. Bardsley [1]. GMRF
priors have been rather popular for example in spatial statistics and machine learning.
Hence, different inverse problems applications with GMRF priors may become fruitful
future research areas.
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[22] M. Orispää and M. Lehtinen. Fortran linear inverse problem solver. Inverse
Problems and Imaging, 4:482–503, 2010.

[23] P. Piiroinen. Statistical Measurements, Experiments and Applications. PhD the-
sis, University of Helsinki, 2005.

[24] H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications.
Chapman&Hall/CRC, 2005.
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